

Isolation of pentonic acid-3-deoxy-4-lactone and peganine-N-oxide from Adhatoda vasica

Ravindra Singh Rao and Poonam Khandelwal*

Department of Chemistry, Mohanlal Sukhadia University, Udaipur-313 001, Rajasthan, India

E-mail: poonamkhandelwal@mlsu.ac.in

Manuscript received online 01 July 2020, accepted 25 August 2020

Present paper deals with the isolation of two compounds namely pentonic acid-3-deoxy-4-lactone and peganine-N-oxide alongwith vasicine from the methanol extract of aerial parts of *Adhatoda vasica*. Pentonic acid-3-deoxy-4-lactone has been isolated for the first time from nature and peganine-N-oxide is reported first time from this plant. The structures of compounds were elucidated by spectroscopic methods.

Keywords: Adhatoda vasica, Justica adhtoda, Adosa, pentonic acid-3-deoxy-4-lactone, peganine-N-oxide.

Introduction

Adhatoda vasica or Justica adhtoda, is commonly known as 'Vasaka' or 'Adosa'. It is a small, evergreen shrub growing many regions of India. It is widely used for the treatment of cough, asthma, phlegm, bleeding hemorrhoids, for both adults and youth¹.

Results and discussion

Chromatographic separation of the methanol extract of dried and powdered aerial part of *Adhatoda vasica* yielded pentonic acid-3-deoxy-4-lactone, aziridine-type base peganine-N-oxide along with vasicine. Pentonic acid-3-deoxy-4-lactone and peganine-N-oxide have been isolated first time from this plant. Earlier peganine-N-oxide (**3**) was isolated from epigeal part of *Nitraria komarovii*². All the compounds were identified with the help of modern spectroscopic techniques.

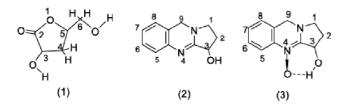


Fig. 1. Structures of compounds 1-3.

Experimental

The NMR spectra were recorded in CD₃OD on JEOL AL-300 MHz FTNMR instrument. Mass spectra (ESI MS) were recorded on Water Xevo G2S Q-TOF spectrometer using MeOH solvent. IR spectra were obtained by Bruker FT-IR spectrophotometer. Melting points were uncorrected.

Extraction and isolation:

The aerial parts of *Adhatoda vasica* was air-dried for 14 days and then crushed to obtain plant material (2 kg). Then above material was soaked in MeOH for 2 days. After that filtrate was concentrated using rotary evaporator at 45°C *in vacuo* to obtain 90 g crude extract. The crude extract was dissolved in distilled H₂O and first extracted with hexane and then with EtOAc. Then ethylacetate extract (50 g) was loaded on silica gel eluted with hexane-ethylacetate mixtures. Many fractions were collected, from which alike fractions were mixed. This fraction was again chromatographed on silica gel, using CHCl₃ and MeOH as eluent. Fraction eluted with CHCl₃-MeOH (90:10) was purified by preparative TLC to afforded pentonic acid-3-deoxy-4-lactone (1), vasicine (2) and peganine-N-oxide (3).

Pentonic acid-3-deoxy-4-lactone (**1**): 20 mg, colourless oil, *m/z* 132.11; HR-ESI-MS *m/z* 133.0518 [M+H]+ (calcd. for C₅H₉O₄ 133.04); IR ν_{max} (KBr): 3500 (OH), 2800 (CH₂), 1740, 1200 cm⁻¹; ¹H NMR (300 MHz, CD₃OD): δ 2.32 (1H, H-4, dd, *J* 18, 2.6 Hz), 2.89 (1H, H-4, dd, *J* 18, 6.9 Hz), 3.65– 3.78 (2H, H-6, m), 4.35 (1H, dd, H-5, *J* 6.9, 3.3 Hz), 4.43 (1H, H-3, m); ¹³C NMR (CD₃OD, 75.45 MHz); δ 39.16 (CH₂), 62.51, 69.70, 90.19, 178.68 (C=O). Further it was identified as 3-hydroxy-5-(hydroxymethyl)-dihydro-furan-2(3*H*)-one or pentonic acid-3-deoxy-γ-lactone. Singh Rao et al.: Isolation of pentonic acid-3-deoxy-4-lactone and peganine-N-oxide from Adhatoda vasica

Vasicine (2): 20 mg, white crystals, m.p. 212–213°C (Lit.^{3,4} 213–214°C); HR-ESI-MS *m*/*z* 189.038 [M+H]⁺ (calcd. for $C_{11}H_{13}N_2O$ 189.05); UV (EtOH) λ_{max} 213, 218, 289 nm; ¹H NMR (300 MHz, CD₃OD): δ 1.98 (1H, m, H-2), 2.42 (1H, m, H-2), 3.30 (1H, m, H-1), 3.45 (1H, m, H-1), 4.67 (3H, m, H-9, 3), 6.96–7.04 (3H, m, H-6, 7, 8), 7.17 (1H, m, H-5); ¹³C NMR (CD₃OD, 75.45 MHz): δ 30.54, 47.70, 50.02, 72.41, 120.39, 123.38, 126.02, 127.38, 129.48, 141.73, 164.50.

Peganine-N-oxide (**3**): 15 mg, white crystals, m.p. 205–207°C (Lit.² 207–208°C); MS *m*/z 204 (M)⁺ C₁₁H₁₂N₂O₂; IR (KBr): 770 (*o*-disubstituted benzene ring), 1230, 1265, 1464, 1511, 1586, 1631 (C-C, C-N), 2862, 2942, 3150 (OH) cm⁻¹; ¹H NMR (300 MHz, CD₃OD): δ 2.12 (1H, m), 2.62 (1H, m), 3.60–3.70 (2H, m), 4.74 (2H, t), 5.04 (1H, m), 7.09–7.29 (4H, m, H-5,6,7,8); ¹³C NMR (CD₃OD, 75.45 MHz): δ 30.17 (CH₂-), 47.53, 51.55. 72.50, 118.58, 119.16, 127.97, 128.12, 130.31, 133.85, 164.73.

Conclusions

We have isolated pentonic acid-3-deoxy-4-lactone and peganine-N-oxide from the methanolic extract of aerial parts of *A. vasica*. It is first report of isolation of these compounds from this plant.

Acknowledgements

Authors are grateful to Prof. Y. Fujimoto, Emeritus Scientist, School of Agriculture, Meiji University, Japan for recording the spectra.

Supporting Information

Files are attached.

References

- A. K. Gangwar and A. K. Ghosh. Int. J. Herb. Med., 2014, 2(1), 88.
- 2. T. S. Tulyaganov, Chem. Nat. Compd., 1994, 30, 727.
- 3. M. P. Jain and V. K. Sharma, Planta Med., 1982, 46, 250.
- B. S. Joshi, Y. Bal, M. S. Puar, K. K. Dubose and S. W. Pelletier, J. Nat. Prod., 1994, 57, 953.