

Synthesis, characterization and antimicrobial evaluation of some new substituted 1*H*-indole-2 carboxamide derivatives

Kamal A. Sweidan^a, Ala'a M. Al-Shamaileha^a, Mohammad K. Abu Sini^b and Rajendra Joshi^{*c}

^aDepartment of Chemistry, The University of Jordan, Amman, 11942, Jordan

^bFaculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, 11733, Jordan

^cDepartment of Chemical Science and Engineering, School of Engineering, Kathmandu University, Nepal

E-mail: rajendra.joshi@k.edu.np

Manuscript received online 19 July 2020, accepted 28 August 2020

A new series of 1*H*-indole-2-carboxamide derivatives has been prepared by simple procedures in good yields, followed by complete characterization using nuclear magnetic resonance, infrared spectroscopy, high resolution mass spectrometry and elemental analysis techniques. The prepared compounds have been tested as potential antifungal and anti-bacterial (Grampositive and Gram-negative) agents. The antifungal and antibacterial results indicated that carboxylic acid compounds exhibited a weak bioactivity; even with replacement of carboxylic acid group with ester, no significant difference in activities was observed relative to standard commercial drugs.

Keywords: Antimicrobial, carboxamide, DEPT-NMR, indole, synthesis.

Introduction

Due to their remarkable medicinal properties, heterocycles are present in a wide variety of drugs, including antibiotic¹, anti-inflammatory², and antibacterial³. Indole (benzo[*b*]-prrrole), is a fused aromatic heterocyclic ring, in which benzene ring is fused to a pyrrole ring⁴. On the other hand, carboxamide functional group is employed as a significant linker between a specific heterocyclic moiety and other substituents in many systems⁵. This is expected, as carboxamide functional group is neutral, stable and possess the capacity of both hydrogen-bond acceptance and donation.

A novel series of anti-TB (Tuberculosis) agents was synthesized with low aqueous solubility and high mouse liver microsomal clearance. This series was prepared in a straightforward route by coupling of substituted 2-carboxyindole with the corresponding aromatic, alkyl or cycloalkyl amines in the presence of *o*-(7-azabenzotriazol-1-yl)-*N*,*N*,*N*,*N*-tetramethyl uronium hexafluorophosphate (HATU) and, *N*,*N*-diisopropylethylamine (DIPEA). All synthesized compounds were analyzed in a whole cell assay for *in vitro* MIC against Mtb⁶.

On the other hand, various ester derivatives showed a wide range of biological activities such as antifungal and

antimicrobial⁷. Due to the increasing of microbial resistance, the renewal of antimicrobial drugs becomes an important demand. Various indole derivatives have been prepared to show various biological activities like anti-breast cancer⁸, anti-inflammatory⁹, antibacterial¹⁰ and antimicrobial¹¹.

Recently, we described the preparation and evaluation of the antimicrobial activity of some heterocyclic compounds^{12–15}. In continuation of our further search for new indole derivatives, we report herein the preparation, characterization and antimicrobial screening of new products of the respective nucleus.

Experimental

The following reagents were bought and used as received: indole-2-carboxylic acid (Aldrich), 2-aminobenzoic acid (Aldrich), oxalyl chloride (Aldrich), *N*,*N*-dimethylformamide (DMF, > 99%) (HPLC grade, Tedia), pyridine (Tedia, 98%), ethyl acetate (AZ Chem.), 1-pentanol (Acros). Chloroform (Labchem) was purified by drying with anhydrous Na₂SO₄ followed by distillation.

IR spectra were obtained by using Thermo Nicolet Impact 400 FT-IR instrument and samples have been prepared as KBr discs. NMR (¹H, ¹³C and DEPT) data were acquired

by a Bruker 500 MHz-Avance-III equipment working at 500.13 (^{1}H) and 125.03 MHz (^{13}C) from solutions in CDCl₃ (2) and DMSO-d₆ (3, 4, 5-6a-e) using tetramethylsilane as internal standard. Further, chemical shifts (δ) are expressed in ppm and coupling constant (J) in hertz (Hz). Mass spectra have been measured by employing an electrospray ion trap (ESI) approach based on collision-induced dissociation on a Bruker APEX-IV equipment; all samples were dissolved in CHCl₃. Elemental analyses of the products were performed using the elemental analyzer instrument (EA3000 A, Italy). The monitoring of the reaction progress was tested by thin layer chromatography on ALUGRAM Xtra SIL G/UV254 plates using dichloromethane-methanol (9.5:0.5) (3-4) and hexaneethyl acetate (7:3) (5-6a-e) as eluent; spots were visualized under UV light. Melting points were measured using SMP 10 stuart apparatus and are uncorrected.

Preparation of the compound **2**: Oxalyl chloride, 1.3 cm³ (6.7 mmol), and 0.05 cm³ DMF were added to a solution of **1**, 0.16 g (0.99 mmol), in 15 cm³ CH₂Cl₂ at 0°C, the resulting solution was stirred for 30 min, then refluxed for further 45 min. After cooling, CH₂Cl₂ and excess oxalyl chloride were removed by rotavapor equipment, and the remaining was employed for the next step directly.

1H-Indole-2-carbonyl chloride (**2**): Yield 0.15 g (85%). IR wavenumbers (cm⁻¹): 3379 (N-H), 1703 (C=O); ¹H NMR data, δ, ppm: 7.15–7.22 m (1H), 7.41–7.43 m (2H), 7.54 m (1H), 7.73 d (1H, *J* 7.5), 8.90 broad s (1H); ¹³C NMR data: 112.3 (CH), 116.2 (CH), 121.9 (CH), 123.6 (CH), 127.1 (CH), 128.0 (C), 129.6 (C), 138.6 (C), 160.0 C=O.

General method for the synthesis of 3-4:

A specific amount of 2- or 4-aminobenzoic acid, 1.36 g (9.9 mmol), in 20 cm³ CHCl₃ was added dropwise to a solution of **2**, 0.89 g (5.0 mmol), in 15 cm³ CHCl₃ and 3 cm³ pyridine at -5° C. The obtained solution was stirred 12 h to get the desired product which was filtered off and dried.

2-(1H-Indole-2-carboxamido)benzoic acid (3): Yield 1.11 g (79%), m.p. 250–252°C; $R_{\rm f}$ 0.75; IR wavenumbers (cm⁻¹): 3287 (N-H amide), 3378 (N-H indole), 1657 (C=O amide), 1741 (C=O carboxylic acid); ¹H NMR data: 7.04–7.16 m (2H), 7.17 t (1H, *J* 7.6), 7.21 t (1H, *J* 7.6), 7.49 d (1H, *J* 8.2), 7.68 m (2H), 8.14 d (1H, *J* 7.8), 8.60 d (1H, *J* 8.4), 11.89 s (1H, NH-amide), 12.02 s (1H, NH-indole), 12.20 broad s (1H, OH); ¹³C NMR data: 103.5 (CH_{arom}), 113.0 (CH_{arom}), 120.1 (CH_{arom}), 120.7 (CH_{arom}), 122.3 (CH_{arom}), 123.2 (CH_{arom}),

124.7 (CH_{arom}), 127.4 (C), 131.8 (CH_{arom}), 132.0 (C), 134.8 (CH_{arom}), 137.5 (C), 137.7 (C), 141.5 (C), 159.8 (C=O amide), 170.5 (C=O carboxylic acid). High-resolution mass spectrum, *m/z*: calculated 303.07388 for $C_{16}H_{12}N_2NaO_3$ [M+Na]⁺; found 303.07401. Found, %: C, 68.27; H, 4.65; N, 9.92. $C_{16}H_{12}N_2O_3$. Theoretical, %: C, 68.56; H, 4.32; N, 9.99. *M* 281.12.

 $\begin{array}{l} \label{eq:4-1} 4-(1H-Indole-2-carboxamido)benzoic acid (4): Yield 1.21 \\ g (86\%); m.p. 256–258°C; R_f 0.60; IR wavenumbers (cm^{-1}): \\ 3291 (N-H amide), 3383 (N-H indole), 1655 (C=O amide), \\ 1776 (C=O carboxylic acid); ^1H NMR data: 7.04 t (1H, J7.7), \\ 7.21 t (1H, J7.4), 7.45 d (2H, J7.8), 7.65 d (1H, J7.9), 7.91 \\ s (4H), 10.43 s (1H, NH-amide), 11.74 s (1H, NH-indole), \\ 12.69 broad s (1H, OH); ^{13}C NMR data: 105.5 (CH_{arom}), 112.9 \\ (CH_{arom}), 119.7 (CH_{arom}, CH_{arom}), 120.4 (CH_{arom}), 122.3 \\ (CH_{arom}), 124.4 (CH_{arom}), 127.3 (C), 130.6 (CH_{arom}, CH_{arom}), \\ 131.6 (C), 137.4 (C), 137.4 (C), 143.7 (C), 160.4 (C=O amide), \\ 167.7 (C=O carboxylic acid). High-resolution mass spectrum, \\ m/z: calculated 281.17230 for C_{16}H_{13}N_2O_3 [M+H]^+; found \\ 281.09207. Found, \%: C, 78.47; H, 5.65; N, 9.92. \\ C_{16}H_{12}N_2O_3. Theoretical, \%: C, 78.56; H, 5.84; N, 10.14. M \\ 281.12. \end{array}$

General method for the preparation of **5**(**a**-**e**) and **6**(**a**-**e**): Sulfuric acid, 0.46 cm³ (8.5 mmol), was added dropwise to a specific solution of **3** or **4**, 0.79 g (2.8 mmol), in 20 cm³ of different aliphatic alcohol at 0°C, the resulting mixture was stirred for 30 min at room temperature, then refluxed overnight. After cooling, the mixture was neutralized with about 30 cm³ of 0.5 *M* NaHCO₃ solution then the organic layer was extracted with CH₃COOC₂H₅ (15 cm³), dried using Na₂SO₄ then evaporated under reduced pressure to get the desired product.

Methyl 2-(1*H-indole-2-carboxamido*)*benzoate* (*5a*): Yield 0.68 g (82%); m.p. 219–220°C; $R_{\rm f}$ 0.65; IR wavenumbers (cm⁻¹): 3285 (N-H amide), 3380 (N-H indole), 1692 (C=O ester); ¹H NMR data: 3.94 s (3H), 7.10 t (1H, *J* 7.5), 7.21 s (1H), 7.21–7.28 m (2H), 7.50 d (1H, *J* 8.2), 7.68 t (1H, *J* 7.7), 7.75 d (1H, *J* 7.9), 8.02 d (1H, *J* 6.3), 8.62 d (1H, *J* 8.3), 11.74 s (1H, NH-amide), 11.95 s (1H, NH-indole); ¹³C NMR data: 53.2 (CH₃), 103.5 (CH_{arom}), 113.0 (CH_{arom}), 120.7 (CH_{arom}), 120.8 (CH_{arom}), 122.4 (CH_{arom}), 123.4 (CH_{arom}), 124.7 (CH_{arom}), 127.4 (C), 131.2 (CH_{arom}), 131.8 (C), 134.9 (CH_{arom}), 137.7 (C), 137.9 (C), 140.1 (C), 159.8 (C=O amide), 168.2 (C=O ester). High-resolution mass spectrum, *m/z*: cal-

culated 317.0896 for $C_{17}H_{14}N_2NaO_3$ [M+Na]⁺; found 317.0897. Found, %: C, 69.04; H, 4.95; N, 9.26. $C_{17}H_{14}N_2O_3$. Theoretical, %: C, 69.38; H, 4.79; N, 9.52. *M* 295.29.

Ethyl 2-(1H-indole-2-carboxamido)benzoate (5b): Yield 0.72 g (83%); m.p. 190–192°C; R_f 0.63; IR wavenumbers (cm⁻¹): 3294 (N-H amide), 3370 (N-H indole), 1683 (C=O ester); ¹H NMR data: 1.35 t (3H, *J* 7.1), 4.40 q (2H, *J* 7.1), 7.10 t (1H, J 7.5), 7.19 s (1H), 7.20–7.29 m (2H), 7.50 d (1H, J 7.9), 7.68–7.71 t (1H, J 7.6), 7.74 d (1H, J 7.9), 8.03 d (1H, J 7.6), 8.60 d (1H, J 8.3), 11.73 s (1H, NH-amide), 11.94 s (1H, NH-indole); ¹³C NMR data: 14.4 (CH₃), 61.9 (CH₂), 103.5 (CH_{arom}), 112.9 (CH_{arom}), 120.7 (CH_{arom}), 120.7 (CH_{arom}), 122.4 (CH_{arom}), 123.5 (CH_{arom}), 124.7 (CH_{arom}), 127.4 (C), 131.2 (CH_{arom}), 131.8 (C), 134.8 (CH_{arom}), 137.7 (C), 137.9 (C), 140.1 (C), 159.8 (C=O amide), 168.2 (C=O ester). Highresolution mass spectrum, m/z: calculated 309.12351 for C₁₈H₁₇N₂O₃ [M+H]⁺; found 309.12337. Found, %: C, 69.92; H, 5.63; N, 9.07. C₁₈H₁₆N₂O₃. Theoretical, %: C, 70.12; H, 5.23; N, 9.09. M 309.46.

Isopropyl 2-(1H-indole-2-carboxamido)benzoate (5c): Yield 0.75 g (83%); m.p. 210–211°C; R_f 0.82; IR wave numbers (cm⁻¹): 3286 (N-H amide), 3389 (N-H indole), 1683 (C=O ester); ¹H NMR data: 1.35 d (6H, J 6.1), 5.24 m (1H), 7.10 t (1H, J7.6), 7.19 s (1H), 7.21–7.27 m (2H), 7.50 d (1H, J8.2), 7.68 t (1H, J7.7), 7.73 d (1H, J7.9), 8.02 d (1H, J7.8), 8.52 d (1H, J 8.3), 11.75 s (1H, NH-amide), 11.92 s (1H, NH-indole); ¹³C NMR data: 22.0 (2CH₃), 69.6 (CH), 103.5 (CH_{arom}), 112.9 (CH_{arom}), 117.4 (C), 120.7 (CH_{arom}), 120.9 (CH_{arom}), 122.4 (CH_{arom}), 123.5 (CH_{arom}), 124.7 (CH_{arom}), 127.4 (C), 131.2 (CH_{arom}), 131.8 (C), 134.8 (CH_{arom}), 137.7 (C), 140.7 (C), 159.9 (C=O amide), 167.7 (C=O ester). High-resolution mass spectrum, m/z: calculated 345.12106 for C₁₉H₁₈N₂NaO₃ [M+Na]⁺; found 345.12096. Found, %: C, 70.88; H, 5.43; N, 8.57. C₁₉H₁₈N₂O₃. Theoretical, %: C, 70.79; H, 5.63; N, 8.69. M 323.63.

Butyl 2-(1H-indole-2-carboxamido)benzoate (**5d**): Yield 0.81 g (86%); m.p. 183–184°C; $R_{\rm f}$ 0.75; IR wavenumbers (cm⁻¹): 3269 (N-H amide), 3375 (N-H indole), 1739 (C=O ester); ¹H NMR data: 0.92 t (3H, *J* 7.4), 1.39–1.47 m (2H), 1.69–1.74 m (2H), 4.36 t (2H, *J* 6.5), 7.11 t (1H, *J* 7.6), 7.20 s (1H), 7.20–7.29 m (2H), 7.50 d (1H, *J* 8.2), 7.7 m (2H), 8.01–8.10 d (1H, *J* 7.6), 8.60 d (1H, *J* 8.3), 11.72 s (1H, NH-amide), 11.93 s (1H, NH-indole); ¹³C NMR data: 13.8 (CH₃), 18.9 (CH₂), 30.2 (CH₂), 65.3 (CH₂), 103.5 (CH_{arom}), 117.1

 $\begin{array}{l} ({\rm CH}_{\rm arom}),\ 120.7\ ({\rm CH}_{\rm arom}),\ 121.0\ ({\rm CH}_{\rm arom}),\ 121.7\ ({\rm CH}_{\rm arom}),\ 122.4\ ({\rm CH}_{\rm arom}),\ 124.6\ ({\rm CH}_{\rm arom}),\ 127.4\ ({\rm C}),\ 131.2\ ({\rm CH}_{\rm arom}),\ 131.8\ ({\rm C}),\ 134.8\ ({\rm CH}_{\rm arom}),\ 137.7\ ({\rm C}),\ 137.7\ ({\rm C}),\ 140.1\ ({\rm C}),\ 159.8\ ({\rm C=O\ amide}),\ 168.2\ ({\rm C=O\ ester}).\ High\ resolution\ mass spectrum,\ m/z:\ calculated\ 335.13904\ for\ C_{20}H_{19}N_2O_3\ [{\rm M-H}]^-;\ found\ 335.1401.\ Found,\ \%:\ {\rm C},\ 71.19;\ {\rm H},\ 6.33;\ {\rm N},\ 7.97.\ C_{20}H_{20}N_2O_3.\ Theoretical,\ \%:\ {\rm C},\ 71.41;\ {\rm H},\ 5.99;\ {\rm N},\ 8.33.\ M\ 337.80. \end{array}$

Pentyl 2-(1H-indole-2-carboxamido)benzoate (5e): Yield 0.79 g (80%); m.p. 183-184°C; R_f 0.85; IR wavenumbers (cm⁻¹): 3284 (N-H amide), 3391 (N-H indole), 1681 (C=O ester); ¹H NMR data: 0.86 t (3H, J 7.2), 1.30–1.38 m (4H), 1.73 m (2H), 4.34 t (2H, J 6.5), 7.10 t (1H, J 7.4), 7.22 s (1H), 7.25 t (2H, J 7.6), 7.49 d (1H, J 8.2), 7.68–7.74 m (2H), 8.04 d (1H, J 7.9), 8.55 d (1H, J 8.3), 11.67 s (1H, NH-amide), 11.92 s (1H, NH-indole); ¹³C NMR data: 14.0 (CH₃), 21.9 (CH₂), 27.8 (CH₂), 27.9 (CH₂), 65.6 (CH₂), 103.5 (CH_{arom}), 117.2 (CH_{arom}), 120.7 (CH_{arom}), 121.0 (CH_{arom}), 122.4 (CH_{arom}), 122.4 (CH_{arom}), 124.7 (CH_{arom}), 127.5 (C), 131.2 (CH_{arom}), 131.8 (C), 134.9 (CH_{arom}), 137.7 (C), 137.8 (C), 140.7 (C), 159.8 (C=O amide), 168.2 (C=O ester). High-resolution mass spectrum, m/z: 349.15537 calculated for C₂₁H₂₁N₂O₃ [M-H]⁻; found 349.15577. Found, %: C, 71.64; H, 6.70; N, 7.63. C₂₁H₂₂N₂O₃. Theoretical, %: C, 71.98; H, 6.33; N, 7.99. *M* 351.97.

Methyl 4-(1*H*-indole-2-carboxamido)benzoate (**6***a*): Yield 0.61 g (74%); m.p. 260–262°C; $R_{\rm f}$ 0.57; IR wavenumbers (cm⁻¹): 3377 (N-H amide), 3369 (N-H indole), 1700 (C=O ester); ¹H NMR data: 3.85 s (3H), 7.01 t (1H, *J* 7.5), 7.25 t (1H, *J* 7.7), 7.48–7.51 m (2H), 7.70 d (1H, *J* 8.0), 8.01 s (4H), 10.52 s (1H, NH-amide), 11.81 s (1H, NH-indole); ¹³C NMR data: 52.3 (CH₃), 105.1 (CH_{arom}), 112.9 (CH_{arom}), 119.7 (CH_{arom}, CH_{arom}), 120.3 (CH_{arom}), 121.7 (CH_{arom}), 122.3 (CH_{arom}), 127.4 (C), 130.7 (CH_{arom}, CH_{arom}), 131.3 (C), 137.2 (C), 137.5 (C), 143.9 (C), 160.5 (C=O amide), 166.3 (C=O ester). High-resolution mass spectrum, *m*/*z*: calculated 317.08949 for C₁₇H₁₄N₂NaO₃ [M+Na]⁺; found 317.08966. Found, %: C, 69.22; H, 4.91; N, 9.31. C₁₇H₁₄N₂O₃. Theoretical, %: C, 69.38; H, 4.79; N, 9.52. *M* 295.29.

Ethyl 4-(1H-indole-2-carboxamido)benzoate (6b): Yield 0.71 g (82%); m.p. 218–220°C; *R*_f 0.75; IR wavenumbers (cm⁻¹): 3378 (N-H amide), 3371 (N-H indole), 1690 (C=O ester); ¹H NMR data: 1.23 t (3H, *J* 7.1), 4.26 q (2H, *J* 7.1), 7.05 t (1H, *J* 7.5), 7.21 d (1H, *J* 7.7), 7.46–7.49 m (2H), 7.72

d (1H, *J* 8.0), 7.95 s (4H), 10.46 s (1H, NH-amide), 11.76 s (1H, NH-indole); ¹³C NMR data: 14.6 (CH₃), 60.9 (CH₂), 105.1 (CH_{arom}), 112.9 (CH_{arom}), 119.7 (CH_{arom}, CH_{arom}), 120.3 (CH_{arom}), 122.3 (CH_{arom}), 124.5 (CH_{arom}), 130.6 (CH_{arom}, CH_{arom}), 131.3 (C), 137.5 (C), 137.8 (C), 143.9 (C), 160.5 (C=O amide), 165.8 (C=O ester). High-resolution mass spectrum, *m*/*z*: calculated 309.12337 for C₁₈H₁₇N₂O₃ [M+H]⁺; found 309.23994. Found, %: C, 69.76; H, 5.58; N, 8.79. C₁₈H₁₆N₂O₃. Theoretical, %: C, 70.12; H, 5.23; N, 9.09. *M* 309.46.

Isopropyl 4-(1H-indole-2-carboxamido)benzoate (**6**c): Yield 0.79 g (88%); m.p. 190–193°C; $R_{\rm f}$ 0.81; IR wave numbers (cm⁻¹): 3366 (N-H amide), 3384 (N-H indole), 1693 (C=O ester); ¹H NMR data: 1.35 d (6H, *J* 6.4), 5.18 m (1H), 7.07 s (1H), 7.22 t (1H, *J* 7.1), 7.39 t (1H, *J* 7.7), 7.60 d (1H, *J* 8.3), 7.80 d (2H, *J* 8.5), 7.84 d (1H, *J* 8.1), 8.05 d (1H, *J* 8.4), 10.42 s (1H, NH-amide), 11.92 s (1H, NH-indole); ¹³C NMR data: 22.2 (2CH₃), 68.6 (CH₂), 99.1 (CH_{arom}), 112.3 (CH_{arom}), 121.5 (C), 123.7 (CH_{arom}), 123.9 (CH_{arom}), 125.0 (CH_{arom}), 137.6 (C), 137.6 (C), 141.1 (C), 158.7 (C=O amide), 165.1 (C=O ester). High-resolution mass spectrum, *m/z*: calculated 345.12154 for C₁₉H₁₈N₂NaO₃ [M+Na]⁺; found 345.12910. Found, %: C, 72.66; H, 5.01; N, 7.59. C₁₉H₁₈N₂O₃. Theoretical, %: C, 72.98; H, 5.29; N, 7.74. *M* 323.63.

Butyl 4-(1H-indole-2-carboxamido)benzoate (6d): Yield 0.79 g (84%); m.p. 182–183°C; R_f 0.82; IR wavenumbers (cm⁻¹): 3295 (N-H amide), 3367 (N-H indole), 1685 (C=O ester); ¹H NMR data: 0.94 t (3H, J 7.4), 1.43 m (2H), 1.69 (2H), 4.27 t (2H, J 6.5), 7.09 t (1H, J 7.5), 7.25 t (1H, J 7.4), 7.46–7.50 m (2H), 7.70 d (1H, J 8.0), 7.99 t (4H), 10.50 s (1H, NH-amide), 11.80 s (1H, NH-indole); ¹³C NMR data: 13.8 (CH₃), 18.9 (CH₂), 30.5 (CH₂), 64.3 (CH₂), 105.0 (CH_{arom}), 112.9 (CH_{arom}), 119.8 (CH_{arom}, CH_{arom}), 120.5 (CH_{arom}), 122.3 (CH_{arom}), 124.5 (CH_{arom}), 127.8 (C), 130.6 (CH_{arom}, CH_{arom}), 131.5 (C), 137.6 (C), 137.5 (C), 143.9 (C), 160.5 (C=O amide), 165.8 (C=O ester). High-resolution mass spectrum, *m*/z: calculated 335.14012 for C₂₀H₁₉N₂O₃ [M-H]⁻; found 335.1401. Found, %: C, 71.26; H, 6.12; N, 7.99. C₂₀H₂₀N₂O₃. Theoretical, %: C, 71.42; H, 5.99; N, 8.33. M 337.80.

Pentyl 4-(1H-indole-2-carboxamido)benzoate (6e): Yield 0.83 g (84%); m.p. 210–212°C; *R*_f 0.84; IR wavenumbers (cm⁻¹): 3292 (N-H amide), 3374 (N-H indole), 1688 (C=O

ester); ¹H NMR data: 0.89 t (3H, *J* 6.8), 1.30 m (4H), 1.71 t (2H, *J* 6.3), 4.25 t (2H, *J* 6.3), 7.07 t (1H, *J* 7.2), 7.25 t (1H, *J* 7.5), 7.48–7.51 m (2H), 7.70 d (1H, *J* 7.9), 7.99 s (4H), 10.50 s (1H, NH-amide), 11.80 s (1H, NH-indole); ¹³C NMR data: 14.1 (CH₃), 22.0 (CH₂), 27.9 (CH₂), 28.2 (CH₂), 64.6 (CH₂), 105.1 (CH_{arom}), 112.9 (CH_{arom}), 119.8 (CH_{arom}, CH_{arom}), 120.5 (CH_{arom}), 122.3 (CH_{arom}), 124.5 (CH_{arom}), 127.4 (C), 130.6 (CH_{arom}, CH_{arom}), 131.5 (C), 137.3 (C), 137.5 (C), 143.9 (C), 160.5 (C=O amide), 165.8 (C=O ester). High-resolution mass spectrum, *m/z*: calculated 349.1565 for $C_{22}H_{21}N_2O_3$ [M-H]⁻; found 349.1558. Found, %: C, 71.74; H, 6.68; N, 7.73. $C_{20}H_{22}N_2O_3$. Theoretical, %: C, 71.98; H, 6.33; N, 7.99. *M* 351.97.

Antimicrobial evaluation: All synthesized compounds were dissolved in DMSO (1:20) and prepared at concentration 0.5 mg/cm³, then screened for their antifungal activity against *C. albicans* DSMZ 11949 by the agar diffusion method¹⁶. Further, all above compounds were screened against different types of Gram-positive bacteria (*Staphylococcus aureus* ATCC 6538), and Gram-negative bacteria (*Escherichia coli* ATCC 8739) according to the procedure described elsewhere¹⁷. Incubation of microtiter plates was performed at temperature of 37°C and the growth of bacterial cells was assessed after 24 h.

Results and discussion

Compound **1** was converted into its corresponding acyl chloride **2** since the latter one is more reactive than the acid itself towards the nucleophilic acyl substitution reaction. Compound **2** was synthesized in a simple method and excellent yield; it involves the reaction of **1** with excess oxalyl chloride in dry DCM as solvent and drops of DMF as catalyst. The ¹H NMR spectrum of **2** shows two different regions of signals, the first one resonates at 8.90 ppm which belongs to the NH, while the second one at 7.15–7.73 ppm that belong to aromatic protons. The ¹³C NMR spectrum indicates the presence of signal of carbon in COCI which resonates at 160.0 ppm while that carbon in COOH (163.3 ppm) was not detected.

The reaction of **2** with 2- and 4-aminobenzoic acids produced the target products **3-4** in high yield, respectively (Scheme 1). Dry pyridine was used as a catalyst and as an organic base in the reaction mixture. Compound **2** was conSweidan et al.: Synthesis, characterization and antimicrobial evaluation of some new substituted etc.

verted into more reactive species by reaction with pyridine (Scheme 2). This step enhanced the progress of the nucleophilic substitution reaction to form the desired amide group, since 2- and 4-aminobenzoic acids are considered weak nucleophiles due to the delocalization of the lone pair of electrons at nitrogen atom.

Scheme 2. Conversion of 2 into more reactive species [(indole-2carbonyl)pyridinium chloride].

Chemical structures of **3-4** were confirmed by different spectroscopic techniques such as, ¹H NMR, ¹³C NMR, DEPT, FT-IR, HRMS and elemental analysis. ¹H NMR spectra of **3-4** showed new signals at 11.89 and 10.43 ppm for the NH amide, respectively.

The ¹³C NMR spectra of **3-4** indicated that a new signal of carbon in the amide group is formed and the corresponding one in **2** was absent. The signal of carbon atom of the amide group resonates at 159.8; 160.4 ppm in **3** and **4**, respectively. FT-IR spectra of **3-4** showed new bands at 3287 and 3314 cm⁻¹, respectively; which belong to N-H bond of the amide group. In addition, the IR band of N-H bond of indole system in **3-4** was detected at 3378 and 3399 cm⁻¹, respectively.

As expected; the IR band of the carbonyl group of COCI (1703 cm^{-1}) was disappeared and a new band of the corresponding carbonyl group, which belong to an amide group in **3-4**, was observed at 1657 and 1655 cm⁻¹, respectively. Fischer esterification reaction of **3** and **4** afforded the target products **5-6(a-e)** in moderate yields. The carbonyl group of

carboxylic acid in **3-4** was activated toward nucleophilic attack of alcohol by using H_2SO_4 . In ¹H NMR spectra of **5-6**(**a**-**e**), new peaks of aliphatic protons have been detected in the aliphatic region from about 0.8 to 5 ppm. Regarding ¹³C NMR data, the signal of carbon of carbonyl group in carboxylic acid disappeared in **3-4**. On the other hand, DEPT, ¹³C NMR analysis assures the proposed chemical structure of all target products; in which CH and CH₃ atoms showed up peaks, CH₂ atoms showed down peak and quaternary carbon showed no peak.

It is clear that all tested compounds exhibit a weak activity (the inhibition zone diameter 9–14 mm) relative to the reference drug, flucanazole (the inhibition zone diameter 45 mm at 0.5 mg/cm³). On the other hand, the variation of alkyl group C1-C5 has no significant effect on the activity, at both positions 2 and 4. Finally, replacement of carboxylic acid in **3** and **4** with ester group **5-6(a-e)** showed no effect in terms of the activity. In addition, all tested compounds exhibit a weak activity (the inhibition zone diameter 7–14 mm) relative to the reference drug, ciprofloxacin (the inhibition zone diameter 53 mm towards *E. coli* and 42 mm against *S. aureus*, at 0.5 mg/mL). On the other hand, the variation of alkyl group C1-C5 has no significant effect on the activity at both positions 2 and 4. Each experiment was conducted in duplicate.

Conclusions

New ester derivatives of 1*H*-indole-2-carboxamide have been synthesized by reacting of 1*H*-indole-2-carbonyl chloride with different anilines, containing carboxylic group. All prepared compounds were fully characterized using various spectroscopic approaches. All target products have been preliminary tested towards antifungal and antibacterial activities. Results indicate that further modification should be done on the chemical structure followed by retesting against different antimicrobial targets.

Acknowledgements

The authors are grateful to Kathmandu University for supporting the present research and also would like to thank University of Jordan, Deanship of Scientific Research for the financial support of this research.

References

- P. Martins, J. Jesus, S. Santos, L. R. Raposo, C. Roma-Rodrigues, P. V. Baptista and A. R. Fernandes, *Molecules*, 2015, 20, 16852.
- A. S. H. S. Guerra, D. J. N. Malta, L. P. M. Laranjeira, M. B. S. Maia, N. C. Colaço, M. C. A. Lima, S. L. Galdino, I. R. Pitta and T. Gonçalves-Silva, *Int. Immunopharmacol.*, 2011, **11**, 1816.
- 3. H. Tashtoush, Y. Al-Soud, A. Maslat, M. Shkoor and M. Al-Talib, Jordan J. Chem., 2007, 2, 11.
- L. G. N. Raju, K. B. Sai, M. S. Meghana, K. Chandana, P. V. Suresh and R. R. Nadendla, *Int. J. Pharm. Chem.*, 2015, 5, 201.
- 5. M. Szostak, L. Yao and J. Aube, J. Org. Chem., 2009, 74, 1869.
- R. R. Kondreddi, J. Jiricek, S. P. S. Rao, B. S. Lakshminarayana, R. L. Camacho, R. Rao, M. Herve, P. Bifani, L. N. Ma, K. Kuhen, A. Goh, K. A. Chatterjee, T. Dick, T. T. Diagana, H. U. Manjunatha and W. P. Smith, *J. Med. Chem.*, 2013, **56**, 8849.
- 7. P. D. Darbre and P. W. Harvey, J. Appl. Toxicol., 2008, 28, 561.

- S. B. Dongare, B. P. Bandgar, P. S. Bhale, S. N. Shringare and H. V. Chavan, *Croat. Chem. Acta*, 2019, **92**, DOI: 10.5562/ cca3418.
- 9. R. M. Phillips, H. R. Hendriks and G. J. Peters, *Br. J. Pharmacol.*, 2012, **168**, 11.
- D. Kumar, N. Kumar, S. Kumar, T. Singh and C. P. Singh, Int. J. Eng. Sci. Technol., 2010, 2, 2553.
- 11. F. Du, X. Lia, C. Li, Z. Shang and B. Wang, *Bioorganic. Med. Chem. Lett.*, 2012, **22**, 4650.
- K. Sweidan, J. Engelmann, W. Abu Rayyan, D. Sabbah, M. Abu Zarga, T. Al-Qirim, Y. Yusuf Al-Hiari, G. Abu Sheikha and G. Shattat, *Lett. Drug Des. Discov.*, 2015, **12**.
- K. Sweidan, W. Abu Rayyan, M. Abu Zarga, M. M. El-Abadelah and H. A. Y. Mohammad, *Lett. Org. Chem.*, 2014, **11**, 422.
- G. Shattat, T. Al-Qirim, G. Abu Sheikha, Y. Al-Hiari, K. Sweidan, R. Al-Qirim, S. Hikmat, L. Hamadneh and S. Alkouz, *J. Enzym. Inhib. Med. Chem.*, 2013, 28, 863.
- K. Sweidan, M. Khanfar, A. Al-Shamaileh, M. Sunjuk and R. Joshi, *Current Chem. Lett.*, 2019, 8, 63.
- E. J. Threlfall, I. S. T. Fisher, L. R. Ward, H. Tschape and P. Gerner-Smidt, *Microb. Drug Resist.*, 1999, 5, 195.
- 17. G. N. Pershin, "Metody eksperimental'noi khimioterapii (Methods of Experimental Chemotherapy)", Moscow, Meditsina, 1971.