
6th ICNTC 2020 Special Issue   

J. Indian Chem. Soc.  

Vol. 97, October(C) 2020 

Temperature Control in Polystyrene Polymerization Reactor by Using 

Neural Network Model Predictive Algorithm. 

E. Etike , G. Özkan*, and H. Hapoglu 

Department of Chemical Engineering, Engineering Faculty, Ankara University, 06500, Ankara, Turkey 

*E-mail: gozkan@eng.ankara.edu.tr 

Manuscript Received online 10/26/2020, Accepted 11/13/2020 
_______________________________________________________________________________ 

Theoretical and experimental temperature control of styrene polymerization in a batch process is 
searched. In MATLAB/Simulink, heat signal is introduced to the model and reactor temperature change 
is recorded. An artificial neural network (NN) model was built with output changes of the disturbing 
process in the face of the pseudo-random binary sequence (PRBS) heat input. The neural network 
model predictive control algorithm is applied to maintain the desired temperature profile. Experimental 
control of the reactor temperature at the optimal temperature profile with the neural network model 
predictive algorithm was achieved successfully. Theoretical and experimental NN models utilized are 
compared and the representation ability of the NN models was shown.  
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Introduction  
In the petrochemical industries, 

polymerization control has importance. To 

develop a detailed mechanistic model-based 

control algorithm may not be feasible. 

Modelling techniques based upon data might 

be preferable1. The NN approach and its 

training techniques have been developed in 

the wide sprite. The backpropagation network 

all neurons except the ones in the input layer 

are related with a bias neuron and a transfer 

function. These transfer functions can be linear 

or nonlinear. According to the purpose of the 

neural network the design and application of 

these transfer functions may differ. The 

computed output vectors are produced by the 

output layer2. Without actually modelling the 

physical and chemical laws, what happens in 

the process might be learnt employing neural 

network. Thus, they are for the understanding 

of the limited phenomenon3,4. Off-line training 

must be necessary for the neural networks as 

time limitation is considered to achieve 

prediction of all possible process conditions. 

The weights used in the network should be 

adapted continuously for learning about new 

process events in real-time. This makes the 

network effect for on-line process control5. A 

neural network model-based predictive control 

applied to a laboratory-scaled multivariable 

chemical reactor was reported by Yu and 

Gomm6.  

To meet ever-stricter product quality, 

the desired trajectories should follow by 

controlled variables. Errors in charging the 

process specifications to enhance the process 

safety management and more efficient use of 

materials and energy lead to batch-to-batch 

variations7. Increased profitability can be 

obtained by employing an efficient monitoring 

and control system. The online control system 

must be capable of quickly identifying any 

abnormal process behavior so that corrective 

actions could be taken8.  

With increasing the desired 

temperature in polymerization, dispersion 



  

range of product molecular weight increases. 

The polymerization rate is also affected by 

medium temperature changes. Control of 

polymerization rate during radical 

polymerization is important for obtaining 

constant polymer quality with a certain range of 

molecular weight9. 

In this work, a predictive control 

algorithm was developed based on 

experimental data taken from a real 

polystyrene reactor. Neural network model 

predictive temperature control application to a 

polystyrene reactor was achieved.  

Models and Methods 

The batch jacketed polymerization 

reactor with the assumptions of the standard 

free-radical polymerization, constant density, 

no chain transfer, no gel effect, the quasi-

steady-state approximation for live radicals are 

modelled in Simulink. Optimization of the batch 

jacketed polymerization reactor concerning 

optimal temperature in minimum time is also 

modelled in Simulink.  

Open-loop dynamic results at different 

optimal experimental conditions are given in 

Table 1. Where I0, M0, Mn, m*, T, tf (s) are initial 

initiator concentration (mole/l), initial monomer 

concentration (mole/l), numerical average 

molecular weight, target monomer conversion, 

temperature (0C), and reaction time 

respectively. 

NN-MPC is implemented to track the 

temperature of the polymerization reactor.  

Neural Network methodology of model 

identification is applied for the polymerization 

reactor. The control algorithm is implemented 

using the NN toolbox in MATLAB. The 

controller is shown as an independent block 

and the process is simulated as an analytic 

model. 

A model predictive controller has 

good performance with a prediction horizon 

and small control-weighting factor. In Figure 1, 

input changes versus time is given. Figures 2 

and 3 show the response of temperature 

controllers as plant and NN outputs to set point 

changes. The error is determined in the range 

of ± 0.03. All parameters utilized are given in 

Table 2 and 3. 

 
Fig. 1. Training input data for NN Predictive 

control 

 
Fig. 2. Training plant output for NN Predictive 

control 

 
Fig. 3. Training NN output for NN Predictive 

control 
 

 

 



  

Table 1. Dynamic and Theoretical NNMPC 

result in two different optimal operating 

conditions 
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1 M0=6,092 
T=97 
I0=0.0125 
tf(s)=7620 
Mn =5200 
 m*=0.5 

 
 
 
 
Mn=3384
9 
m*=0.33   

 
 
 
 
Mn*=45814 
m*=0.45 

2  
M0=6,092 
T=92 
I0=0.0150 
tf(s)=10200 
Mn =5200 
m*=0.5 

 
 
 
 
 
Mn=3020
3 
m*=0.36   

 
 
 
 
 
Mn*=43096 
m*=0.48   

Theoretical NNMPC simulating result for 

numerical average molecular weight values at 

optimal operating conditions is also given in 

Table 1. The reactor temperature desirably 

tracks the optimal temperature trajectory and 

this provides good numerical average 

molecular weight values. The neural network 

model was applied to the related system9. To 

identify the system, Pseudo-Random Binary 

Sequence type of heat input was introduced to 

the reactor and the reactor temperature was 

measured.  

The neural network was trained with the 

response data obtained from the reactor and 

the model representing the polymer reactor 

was built. The neural model had five inputs and 

an output. The activation function was taken to 

be tansig(x), Inputs (Ti-1, Ti-2, Ti-3, Ui-1, Ui-2), 

Target (Ti). Two neurons were found in the 

hidden layer of the artificial neural network. 

The open-loop response of the experimental 

artificial neural network model, the theoretical 

NN model and an analytical model is in good 

agreement with maximum error of 2.50C. 

Table 2. Parameters for NN model and NN 
MPC 

Size of hidden layer 2 
Sampling interval 2 s 
Delayed Plant Inputs 2 
Delayed Plant Outputs 2 
Training Samples. 5000 
Maximum Plant Input 70 Cal/s 
Minimum Plant Input 0 Cal/s 
Train epochs 200 

Train function 
Levenberg-
Marquardt 

Activation function tansig(x) 
Cost horizon  (N2) 2 
Control horizon (Nu) 2 
Control weighting factor 
(α) 

0.01 

Search parameter (a) 0.001 
Iterations Per Sample 
Time 

2 

Neural Network Model Predictive 

Control System used a neural network model 

for the prediction of a step ahead.  The control 

process was achieved with linear optimization 

based on the cost function.  The cost function 

to be minimized is given as 
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Where N1, N2, Nu, are minimum, maximum 

costing horizons and control costing 

respectively.    

The MPC tuning parameters were 

set10. The MPC criterion is optimized 

employing the gradient descent optimization 

technique. One-step-ahead optimization is 

shown as follows:     
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In Equation 2 above, as α>0. The 

control weight factor, ∆u(t) = u(t) - u(t-1) and 

ym(t+1) is the output of a step forward ahead in 

the artificial neural network.  To bring the 

controller, ym(t+1), a value in a step to the 

required value, w(t+1), may require very much 

effort. For the good reconciliation between the 

control and the changes in the control effort in 

the optimization of the cost function, α≠0 was 

assumed. 

Having ensured that the artificial 

neural network model has been formed, the 

optimization of the cost function was realized 

using the three steps non-linear dynamic 

model shown below 
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Where L>0 is the optimizing step and 

e(t+1)=w(t+1)-ym(t+1). It has been proved that 

a three-layer feed-forward neural network has 

the capability of universal function 

approximation. 

The formed artificial neural network 

model is given in Equation 4 as: 
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v is the weight. s(.) is represented as 
follows 
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The sensitivity ∂e(t+1)/ ∂u(t) is 
derived from the neural network model as 
follows: 
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The mathematical model description of the 
artificial neural network obtained upon 
substituting the calculated weight and bias 
values is given Equations 7-9. 
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The weight and bias values (Table 3.) for the 

trained artificial neural network were taken and 

the algorithm for the predicted artificial neural 

network control was written in visual basic 

programming. 

Results and discussion 

The following experiments were performed to 

verify the sensitivity of the control systems and 

calculate the control and system parameters. 

The parameters like weighting factor, sampling 

interval, the number of iterations within a 

sampling interval were determined using the 

trial and error method.  Typical set point 

tracking results are shown in Figure 4. Settling 

time of response with (λ / (1+αλ)) =5 was found 

to be much shorter than the one obtained with 

(λ / (1+αλ)) =0.1. The best values of the set of 

tuning parameters for the NNMPC method 

were selected and also the most suitable value 

of the parameter was taken ((λ / (1+αλ)) =5.  



  

This group of parameters value was used to 

carry out the required experiments. 

 

Table 3.The weights and bias values of the 
NN for the polymer experimental system 
IW{1,1} LW{2,1} b{1} b{2} 

 
-0.020209 

-71.0043 
 
 
 
 
 
-0.50827 
 

1.3569 
 
 
 
 
 
-88.402 

95.5491 

0.0081864 
-0.001663 
-0.009824 
0.0039121 
 
3.5582 
-40.5218 
35.4169 
9.2695 
0.50177 

   

Since the controlled variables were 

chosen as the reaction temperature the control 

was, therefore, aimed at making the reaction 

occur at the optimal temperature profile. When 

the reactor solvent medium was at the steady-

state condition with definite values of heating 

and cooling flow rate, benzoyl peroxide was 

added. Furthermore, the temperature, being an 

exothermic property of the reaction, increased 

and the NNMPC algorithm was applied to 

control the reactor temperature at the optimal 

trajectory. 

In the control of the polystyrene 

reactor, NNMPC Algorithms which was written 

in a visual basic programming language was 

used and the most appropriate NN architecture 

was obtained by using 2 neurons in the hidden 

layers. The parameters, weighting factor, 

sampling interval, the number of iterations 

within a sampling interval were chosen by 

utilizing trial and error technique.  The best 

method of the training of NN was selected as 

the Levenberg-Marquardt algorithm and used 

in the control step. Many data which were used 

in the training were collected using the 

 

(a) (λ / (1+αλ)) =0.1 

 

(b) (λ / (1+αλ)) =5 

Fig. 4. The response of temperature controller 
to set point changes 

experimental system.  To obtain the 

polymer with the desired characteristics, the 

temperature control of the reactor was carried 

out over the optimum temperature profile by 

NNMPC algorithm and the results of the 

control are presented in Figure 5. PID control 

result for I0=0.00125 is given in Figure 6. PID 

parameters were found using Cohen- Coon 

method as Kc =18.55, τI= 2.428, τD = 0.361. 

Where Kc, τI, τD represents controller gain, 

derivative time, and integral time respectively. 

In comparison with NNMPC control result, the 



  

fluctuations occurred are more rapid and large. 

So, NNMPC controller for tracking temperature 

path is more effective than the PID controller. 

Table 4. Experimental NNMPC and 
Experimental PID for two different optimal 

operating conditions. 
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1 M0=6,092 

T=97 
I0=0.0125 
tf(s)=7620 
Mn =5200 
 m*=0.5 

 
 
 
 
Mn=51739 
m*=0.63   

 
 
 
 
Mn*=3842
8 
m*=0.44 

2  
M0=6,092 
T=92 
I0=0.0150 
tf(s)=1020
0 
Mn =5200 
 m*=0.5 

 
 
 
 
 
Mn=56215 
m*=0.66   

 
 
 
 
 
Mn=50299 
m*=0.65   

 

Numerical Average Molecular Weight 

determined from the experiment NNMPC, PID 

is given in Table 4.  As can be seen from 

Figure 6, the reactor temperature closely 

follows the optimal temperature trajectory 

without exhibiting significant fluctuations, and 

this provides to obtain molecular weights 

showed a very high tendency of approaching 

the controlled one. That is to say that, the 

targeted polymer in this work, which was the 

one with the numerical average molecular 

weight of 52000 g/mole, has been 

approximately achieved.  As can be seen from 

Table 4, Numerical Average Molecular Weight 

in the NNMPC system is better than the one in 

the PID controller. 

 

(a) I0=0.0150 mole/l, Exp number (1) 

 

(b) I0=0.0125 mole/l, Exp number (2) 

Fig. 5. Temperature NNMPC control profile 

 

Fig. 6. Temperature PID control profile 
(Io=0.0125 mol/l) 

Conclusions 
Experimental and theoretical 

implementation of NNMPC algorithm was 
achieved successfully to track the temperature 
on a predetermined trajectory in a batch 



  

polymerization reactor. The results obtained 
from the Neural Network Model Predictive 
Control were found very satisfactory by 
comparing with the experimental results of the 
work carried out by Özkan et al11. In the cases 
studied, the temperature control with the 
NNMPC algorithm was performed better than 
the one obtained using the PID controller.  

Acknowledgements 
This work was financially supported 

by TÜBİTAK (The Scientific and Technological 
Research Council of Turkey) under Project No: 
107M638.  

References 
1. Y. Tian, J. Zhang, J. Morris, Chemical 

Engineering and Processing, 2002, 41, 
531-538.  

2. G. Özkan, L. Uçan, G. Özkan G, Neural 
Computing and Applications, 2010, 1-9.  

3. S. Curteanu, C. Petrila, International 
Journal of Quantum Chemistry, 2006, 106, 
1445-1456. 

4. T. Mete, G. Ozkan, H. Hapoglu, M. 
Alpbaz, Computer Applications in 
Engineering Education, 2012, 19, 1-10.   

5. S. T. Deniz, P. Özkan, G. Özkan, Dental 
Materials Journal, 2019, 38, 1012-1018.  

6. D. L. Yu, J. B. Gomm, Control   
Engineering Practice, 2003, 11, 1315-
1323. 

7. P. Nomikos, J. F. Macgregor, AICHE, 
1994, 40, 1361-1375. 

8. S. G. Kulkarni, A. K. Chaudhary, S. Nandi, 
S. Tambe, S. Kulkarni, Biochemical 
Engineering Journal, 2004, 18, 193-210. 

9. G. Özkan, O. Tekin, H. Hapoglu, Korean 
Journal Chemical Engineering, 2009, 26, 
1201-1207. 

10. E. Etike, Application of model based 
control based on artificial neural network 
to a polymerization reactor, Ankara 
University Graduate School of Natural and 
Applied Sciences, 2009, 1-79. 

11. D. W. Clarke, C. Mohtadi, and P. S. Tuffs, 
Automatica, 1987, 23, 137–148. 

12. G. Ozkan, H. Hapoglu, M. Alpbaz, Applied 
Thermal Engineering, 2006, 26(7), 720-
726.    

 

 


