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__________________________________________________________________________________ 

This paper aims to investigate the efficacy of adaptive Kalman filers for power system harmonics 

estimation. Significant increment of non-linear loads is responsible for the presence of harmonics in 

power signals which deteriorates the power quality. Towards the improvement of power quality, 

estimation of the harmonic components is an essential task which has been proposed to be carried out 

by adaptive Kalman filter and its nonlinear variants. The paper investigates the suitability of adaptation 

algorithms for harmonics estimation and recommends an appropriate choice of adaptation algorithm. In 

addition to this, this paper presents a scheme of joint estimation of fundamental frequency along with 

the harmonic parameters using the nonlinear variants of Adaptive Kalman filter. From the relative 

performance comparison of adaptive nonlinear filters during harmonics estimation adaptive Cubature 

Quadrature Kalman filter is recommended for power system harmonics estimation for its performance 

accuracy, numerical stability and reasonable computation cost. 

Keywords: Harmonics estimation, Cubature filter, Cubature Quadrature filter, Maximum Likelihood 

Estimation, Q Adaptation 

__________________________________________________________________________________ 
Introduction  

In electrical power systems, power 

signals get perturbed from pure sinusoidal 

waveform due to presence of harmonics. 

Reason behind the existence of such 

harmonics rich signals is mainly because of the 

increasing demand of non-linear loads 

comprises of power electronics based devices, 

high power industrial loads, etc. which results 

in deterioration of power quality1. Therefore, it 

is indeed an essential task to estimate 

harmonics with accuracy to take corrective 

actions for power quality improvement. There 

are several non-parametric methods of 

harmonic estimation which includes methods 

based on Discrete Fourier Transform (DFT), 

Fast Fourier Transform (FFT), Least Mean 

Square (LMS), Recursive Least Square (RLS) 

and other Recursive algorithms2. Kalman filter 

(KF), reportedly, is a simple and strong 

candidate for estimation of harmonic 

parameters of a power signal corrupted with 

measurement noise and is given preference as 

it is free from the shortcomings of the other 

methods3. Therefore, the present workers have 

focused on Kalman filter based harmonics 

estimation.  

However, Kalman Filter has a 

restricted application when non-linearity is 

introduced in the measurement equation. In 

such situations the non-linear estimation is 

carried out by nonlinear variants of Kalman 



filters out of which Extended Kalman Filters 

(EKF) is the most popular. In the paper4 

Robust Extended Kalman Filters (REKF) is 

presented for tracking time-varying harmonic 

components. But as the degree of non-linearity 

in the signal increases, the performance of 

EKF deteriorates due to linearization of 

significant nonlinearities. As an alternative, 

UKF has been used in5, where the harmonic 

estimation in microgrid is done and UKF 

outperforms EKF. Still, for high dimension non-

linear signal, the accuracy of UKF deteriorates. 

CKF is, therefore, introduced in6 based on 

spherical cubature rule, as an alternative to 

UKF which leads to nominal computational 

effort and linearization problem is also taken 

care of, as CKF is based on non-linear model. 

The CKF is free from tuning parameters like 

UKF and has comparable estimation accuracy 

of UKF. 

Several other filters such as Local 

Ensemble Transform based Kalman filter (LET-

KF) is used in7 which compared to Ensemble 

Kalman Filter (En-KF) reported in8 , revealing 

that LET-KF outperforms En-KF in terms of 

accuracy and computational efficiency. 

In a linear system, the best estimation 

for a non-adaptive filter is possible only when 

the measurement and process noise 

covariances i.e., Q and R are known a priori. In 

practice an arbitrary choice of noise covariance 

due to the lack of knowledge leads to the 

divergence of the estimates. For satisfactory 

performance of Kalman filter proper tuning of 

Kalman filter is essential. Improper tuning of 

noise covariances severely degrades the 

performance of the filter and may cause 

divergence. Therefore, large number of cases 

needs to be undertaken for offline tuning of KF. 

Adaptive Kalman filters can avoid this by online 

tuning/ adaptation of the noise covariance. 

Early works on KF9,10,11 report on auto tuning of 

noise covariance by online adaptation using 

the parameter estimation methods, viz., 

Maximum Likelihood Estimation (MLE), 

Maximum a Posterior (MAP) respectively. The 

performance Kalman filter incorporated with 

the adaptation algorithms for harmonics 

estimation has been explored in this paper. For 

static harmonics estimation (where amplitude 

of harmonics remains constant) usually the 

system dynamics is hardly affected by system 

noise and therefore the noise covariance 

should be of lower value. If the relative 

difference between the true noise covariance 

and the noise covariance initialized for the filter 

is high then the estimation accuracy for non-

adaptive KF degrades significantly. AKF can 

adapt online the inaccurate initial choice of 

noise covariance and ensure satisfactory 

estimation result. During the dynamic 

harmonics estimation where the amplitude of 

harmonics are time varying the system 

dynamics is modeled as random walk model 

with time varying noise covariance. In such 

situations the use of AKF is highly 

recommended. 

When along with harmonics the 

fundamental frequency needs to be estimated 

the measurement equation becomes nonlinear 

and AKF cannot be employed. For such joint 

estimation problem adaptive Extended Kalman 

filter (AEKF) and its successors may be 

employed. In this work along with AEKF, 

adaptive Cubature Kalman filter (ACKF) and 

adaptive Cubature Quadrature Kalman filter 

(ACQKF) have been employed and their 

relative performance has been carried out. 

A few works have been reported in 

literature where adaptive Kalman filters or their 

nonlinear variants are employed in power 

system harmonics estimation. A self-tuning 



Kalman filter algorithm is applied for harmonic 

estimation in12 where the harmonic parameters 

are time varying. The adaptation was 

performed on the basis of an intuitive 

adaptation algorithm. In13 the value of process 

noise covariance is switched between different 

values on the basis of a hypothesis framed on 

t-statistics. 

Hybrid Genetic Algorithm and 

Adaptive Particle Swarm Optimization based 

Unscented Kalman Filter (UKF) is developed 

in14 to estimate the power system harmonic 

components. The hybrid Genetic Algorithm and 

Adaptive Particle Swarm Optimization 

algorithm is used to estimate the process and 

measurement noise covariance matrices by 

minimizing the Root Mean Square Error 

(RMSE) of the UKF. Here, the approach of 

standard parameter estimation methods has 

not been explored. 

In this paper a comparative study of 

three different versions of adaptive Kalman 

filter has been presented along with its 

nonlinear version. The contributions of this 

work are listed below: 

Innovation based Q adaptive KF has been 

employed for harmonic estimation of a power 

signal perturbed with Gaussian noise where 

direct adaptation based on MLE method, MAP 

based Q adaptation and intuitive Q scaling 

methods of adaptation have been validated. 

Performance of these adaptation algorithms 

has been investigated based on RMS error 

from Monte Carlo simulation. MLE based direct 

adaptation of Q is advocated over the other 

methods of adaptation. 

Q adaptation algorithm is also demonstrated 

for dynamic harmonics estimation where the 

amplitude of harmonic signal is time varying. 

Superiority of Adaptive CKF with MLE based 

direct Q adaptation is exemplified over its 

competing algorithm of Q scaling and MAP 

based CKF and also over non-adaptive CKF 

during joint estimation of frequency and 

harmonic parameters with unknown process 

noise covariance. 

New algorithm of Adaptive Cubature 

Quadrature is also formulated and validated 

with harmonics estimation problem. This is one 

of the non trivial contributions of this work. 

Superiority of the ACQKF is demonstrated over 

Adaptive CKF during harmonics estimation. 

The Adaptive Cubature Quadrature Kalman 

filter has been introduced to demonstrate its 

superiority amongst its competitors such as 

Adaptive Cubature filter, Adaptive Extended 

Kalman filters from the performance 

comparison carried out in this paper so that 

this newly formulated adaptive filter may be 

promoted for real time applications. 

Harmonic Estimation Problem 

In harmonic estimation problems, the 

designer needs to estimate the amplitude and 

phase of the harmonic components. Along with 

that, fundamental frequency of the signal may 

also be needed to be estimated. The nonlinear 

dynamic systems can be expressed6 by the 

following state space equations. 

  k1kk μxfx  
             (1) 

  kkk υxhy               (2) 

Where, xk is the state vector, zk is the 

measurement vector, h (.) and f(.) are the 

nonlinear measurement function and  state 

dynamics respectively. The vectors,
kμ , 

represents Gaussian process noise 

 Q0,μk N~  and the vector 
kυ  represents 

Gaussian measurement noise  R0,υk N~ . 

When frequency estimation is not 

required the system becomes linear and 

Kalman filter can be applied in that case for 

estimation as explained later. 



Generally, a power signal containing 

harmonics and noise can be represented7 by 
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Where, N represents the number of harmonics, 

ω is the angular frequency, 
n being the phase 

of nth harmonic component. 
dcA  is the DC 

component amplitude. Sampling time period is 

given by 
sT . k is discrete time step. The 

exponential term sdckTe
  provides the decaying 

part of DC component. The noise in the 

measured signal is denoted by k . 

For state estimation, we need to simplify the 

above expression. This is carried out by 

expanding the exponential term using Taylor’s 

expansion method7 and ignoring the higher 

order terms as . 
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Substituting (4) in (3) we get  
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Further expansion of (5) leads to (6) 
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Equation (6) can be expressed in terms of 

state space model as given by (7) 

k1k1kk μxFx  
               (7) 

Where the state transition matrix of dimension 

(2N+3) is given by (8) 
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The state vector is selected as 
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The measurement equation in linear form can 

be represented as 

kkkk υxHy              (10) 

Where, 

 11cossincossin kkkk  kH

The nonlinear measurement equation 

becomes linear when the fundamental 

frequency, ω is known a priori. In that case the 

order of the system state reduces from (2N+3) 

to (2N+2).  

The nonlinear measurement equation can be 

alternatively expressed as 
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Therefore, the amplitude, phase, the decaying 

DC component of state as related with the 

state vector as 

   122 22  NNA kkn xx            (12) 

    122tan 1   NN kkn xx            (13) 

 12  NA kdc x             (14) 

   1222  NN kkdc xx            (15) 

Algorithm for Adaptive filters 

Underlying frame work of Kalman Filter 

Kalman filter (KF) is a robust method 

for estimation of harmonic parameters of a 

power signal corrupted with measurement 

noise. KF is simple and robust. It’s a Recursive 

Data Processing Algorithm. For the situation 

when frequency, ω is known, both the system 

and the measurement equation become linear 

and Kalman filter can be employed for 

harmonics estimation. At first the state vector 

kx is estimated. Thereafter, the harmonics 

parameters are obtained as given by (12) to 



(15). The well known Kalman filter algorithm 

from16 has been employed as an underlying 

framework for adaptive Kalman filter when the 

process/system noise covariance, Q, remains 

unknown. 

Underlying framework of EKF 

When the fundamental frequency 

needs to be estimated to check its variation, 

the nonlinear filters are necessitated. Extended 

Kalman filter (EKF) is widely used nonlinear 

filter for state estimation which is formulated 

based on linearization. After linearization it 

follows the same algorithm for Kalman filter. 

However, at each prediction and correction 

steps the nonlinear state equation is linearized 

about predicted estimate and the nonlinear 

measurement equation is linearized about 

corrected estimate. For the brevity of the paper 

algorithm has not been presented and readers 

are requested to refer16. 

Underlying framework of CKF and CQKF 

Cubature & Cubature Quadrature 

Kalman filters are sigma point filters for 

nonlinear estimation which ensure superior 

performance over EKF when the degree of 

nonlinearity in the system or measurement 

increases. The CKF is a simplified algorithm 

which can be easily obtained from Cubature 

Quadrature Kalman filter which is based on 

Cubature Quadrature rule15. Cubature 

Quadrature rule15 is based on Spherical Radial 

rule of numerical approximation of Gaussian 

integrals. For nth order integral, the number of 

quadrature points will be 2nn’ where n’ is the 

order of radial integration. When n’=1, the 

Cubature Quadrature rule is reduced to 

Cubature rule which is same as17 generated 

from based on the spherical cubature rule. 

Calculation of Cubature Quadrature 

points and weights: The quadrature points15, 

i are obtained as 
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With weights15, iw  are obtained as 
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Where i  are the roots of thn  order 

Chebyshev Laguerre polynomial15, 
nL 

 with 

12 n  given by (18) 
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For more details readers are requested to refer 

the base paper15 where from the prediction and 

correction steps are also taken. 

(i) Initialization: Initialize R,Q,P,x 00
ˆˆ  

(ii) Prediction step: 

Compute Cholesky Factor such that 

 T1k1k1k SSP   ˆˆˆ              (19) 

Choose quadrature points as 
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kx is predicted estimate and
kP is predicted 

error covariance 

Q denotes the assumed value of process 

noise covariance. For Q adaptation, 
1kQQ  ˆ . 

(iii) Correction step: 

Compute Cholesky Factor such that 

 Tkkk SSP              (23) 

Select the points as 
kiki xζSχ            

(24) 

The predicted estimate of measurement  
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The following covariance can be computed as 
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The filter gain 
kK  is given by  
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kx̂ is a corrected estimate of state and
kP̂  is a 

corrected error covariance. 

Adaptation Algorithm: 

In face unknown process noise 

covariance, Q, the auto tuning of Q is 

necessitated. Towards this objective three 

different approaches for adaptation are 

presented. 

1) Direct Q adaptation based on 

Maximum Likelihood Estimation18:  

Compute the innovation sequence as 

kk zy k               (31) 

The estimated innovation covariance can be 

computed from a sliding window of epoch 

length L  
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Direct adaptation algorithm for 
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2) Scaled Q based on Covariance 

Matching method18: 

Adapted Q is obtained as 
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3) Q adaptation based on Maximum a 

Posterior method19 : 

Adapted Q is obtained as 
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Problem statement 

A stationary power signal has been 

given below that contains 1st, 3rd, 5th, 7th and 

11th order of harmonics and also a DC 

component7, 8. The power signal is corrupted 

with a measurement noise, µ, of noise 

covariance R=0.0025.  
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The objective of this work is to 

estimate the amplitude, phase, DC component 

and the fundamental frequency. The process 

noise covariance to generate the truth model is 

selected as 
1212IQ 

  610 . However, for the 

estimator it is assumed unknown and therefore 

initialized with an arbitrary choice of 

QQ  2

0 10ˆ . The initial value of the true state 

vector can be obtained using ω=314rad/sec in 

(9). The initial choice of state for the filter is 

chosen as 
00 xx  98.0ˆ  and 

12120 IP ˆ . 

Results and Discussions 

Simulation Results for AKF: 

 
Fig. 1. True and estimated fundamental 

amplitude for a representative run 



 
Fig. 2. True and estimated third phase for a 

representative run 

 
Fig. 3. True and estimated DC amplitude for a 

representative run 

The results for the harmonic 

estimation using Adaptive Kalman Filter (AKF) 

are given by Fig. 1-4. Fig. 1 to 3 show the true 

and estimated states. Performance of different 

Q adaptive KF can be observed here. Fig. 4 

presents the Mean Square Error of 

fundamental amplitude from Monte Carlo 

Study with 500 runs. It is observed that for 

non-adaptive KF and also for MAP based 

method the estimation is not acceptable. Large 

errors in the estimated values are noted as 

compared with the true value. For Scaled 

method, there is considerable improvement in 

the estimation compared to the other two 

methods. However, for direct method, a better 

estimation performance is noted as the error is 

much lower compared to the other methods. 

Therefore, the direct method is preferred for 

adaptation.  

 
Fig. 4. Fundamental amplitude MSE and error 

covariance for 500 MC runs 

Results for Dynamic Signal: 

 
Fig. 5. True and estimated fundamental 

amplitude for a representative run 

 
Fig. 6. Fundamental amplitude MSE and error 

covariance for 500 MC runs 

The power signals with time varying 

amplitude are called dynamic signals. AKF is 

applied to the dynamic signal as given in7. The 

superiority of the MLE based direct adaptation 

is demonstrated for dynamic signal as well. 

Simulation Results for ACKF: 



In the above case studies the 

measurement equation is linear as ω is known. 

When the frequency needs to be estimated the 

measurement equation becomes nonlinear. To 

deal with this problem, Adaptive CKF is applied 

and a comparative study has been carried out 

for investigating the best adaptive methods 

amongst the presented methods. 

Parameter values considered for this 

filter are 
33

610 11IQ 

   and R=0.0042 . The 

initial choice remains the same. However, the 

error covariance taken as 
33

310ˆ
110 IP 

   with 

  211,11ˆ 0P . 

 
Fig. 7. True and estimated DC amplitude for 

representative run 

 
Fig. 8. Frequency MSE for 500 MC runs 

 
Fig. 9. Frequency MSE for 500 MC runs 

From the previous observations, it is 

clear that for adaptation methods considered in 

this paper, MLE based direct adaptation 

methods gives best results compared with the 

Scaled and MAP based methods. In this 

section, a comparative study has been done 

between two non-linear adaptive filters, i.e. 

AEKF and ACKF. Direct adaptation method is 

considered for Q adaptation of both the filters. 

It is observed from Fig. 9 that ACKF is better 

than AEKF. Mean Square Error for the 

estimates is obtained using Monte Carlo 

simulation with 1000 runs. 

Simulation Results for ACKF: 

Parameter values considered for this 

filter are
33

210 11IQ 

   and R=0.0042 . The 

initial error covariance taken as 

33

310ˆ
110 IP 

   where the frequency 

component is having   211,11ˆ 0P . 

 
Fig. 10. True and estimated fundamental 

frequency for a representative run 



 
Fig. 11. Frequency MSE for 500 MC runs 

 
Fig. 12. True and estimated fundamental 

amplitude for a representative run 

 
Fig. 13. Fundamental amplitude MSE for 500 

MC runs 

 
Fig. 14. True and estimated fundamental 

phase for a representative run 

 
Fig. 14. Fundamental phase MSE for 500 MC 

runs 

This section represents the 

comparative estimation results of power 

system harmonics for ACQKF and ACKF. The 

frequency estimation is shown in Fig. 10. It is 

observed that ACQKF gives good estimation 

accuracy, as the estimated value by it is much 

closer to the true value as compared to that of 

ACKF. This is verified by the respective MSE 

plot as shown in Fig. 11. Note that this 

estimation results have been obtained for 500 

Monte Carlo runs. In the same vein the results 

are presented for the estimates of fundamental 

amplitude and phase. We can clearly see that 

estimated value of ACKF is not following the 

true value and is also sometimes diverging. 

The respective MSE plots are shown in Fig. 

11, Fig. 13 and Fig. 15. A close look to these 

MSE plots reveals that mean square error for 

ACQKF is much less as compared to that of 

ACKF which indicates its superiority over 

ACKF. 

Concluding Discussions 

Significant findings from comparative 

performance analysis of different adaptive 

Kalman filters along with their nonlinear 

variants during power system harmonic 

estimation are enumerated below: 

Monte Carlo simulation demonstrates 

the superiority of Maximum Likelihood 

Estimation based direct Q adaptation over the 

MAP based and scaling methods. This is 



verified for the dynamic estimation of power 

system harmonics. 

For the joint estimation of frequency 

and the harmonic parameters nonlinear variant 

of Q adaptive Kalman filters are employed. An 

adaptive nonlinear filter viz. MLE based Q 

adaptive Cubature Quadrature Kalman filter 

has been formulated in this work and its 

superiority has been demonstrated over the 

competing algorithm of Q adaptive CKF and 

EKF. 

On the basis of above findings MLE 

based Q adaptive Kalman filter and Cubature 

Quadrature Kalman filters are advocated for 

dynamic estimation of power system 

harmonics. 
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