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Introduction
In the petrochemical industries, polymerization control has

importance. To develop a detailed mechanistic model-based
control algorithm may not be feasible. Modelling techniques
based upon data might be preferable1. The NN approach
and its training techniques have been developed in the wide
sprite. The backpropagation network all neurons except the
ones in the input layer are related with a bias neuron and a
transfer function. These transfer functions can be linear or
nonlinear. According to the purpose of the neural network
the design and application of these transfer functions may
differ. The computed output vectors are produced by the
output layer2. Without actually modelling the physical and
chemical laws, what happens in the process might be learnt
employing neural network. Thus, they are for the understand-
ing of the limited phenomenon3,4. Off-line training must be
necessary for the neural networks as time limitation is con-
sidered to achieve prediction of all possible process condi-
tions. The weights used in the network should be adapted
continuously for learning about new process events in real-
time. This makes the network effect for on-line process con-
trol5. A neural network model-based predictive control ap-
plied to a laboratory-scaled multivariable chemical reactor
was reported by Yu and Gomm6.
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To meet ever-stricter product quality, the desired trajec-
tories should follow by controlled variables. Errors in charg-
ing the process specifications to enhance the process safety
management and more efficient use of materials and energy
lead to batch-to-batch variations7. Increased profitability can
be obtained by employing an efficient monitoring and control
system. The online control system must be capable of quickly
identifying any abnormal process behavior so that corrective
actions could be taken8.

With increasing the desired temperature in polymeriza-
tion, dispersion range of product molecular weight increases.
The polymerization rate is also affected by medium tempera-
ture changes. Control of polymerization rate during radical
polymerization is important for obtaining constant polymer
quality with a certain range of molecular weight9.

In this work, a predictive control algorithm was developed
based on experimental data taken from a real polystyrene
reactor. Neural network model predictive temperature con-
trol application to a polystyrene reactor was achieved.

Models and methods
The batch jacketed polymerization reactor with the as-

sumptions of the standard free-radical polymerization, con-
stant density, no chain transfer, no gel effect, the quasi-steady-
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state approximation for live radicals are modelled in Simulink.
Optimization of the batch jacketed polymerization reactor
concerning optimal temperature in minimum time is also
modelled in Simulink.

Open-loop dynamic results at different optimal experimen-
tal conditions are given in Table 1. Where I0, M0, Mn, m*, T, tf
(s) are initial initiator concentration (mol/L), initial monomer
concentration (mol/L), numerical average molecular weight,
target monomer conversion, temperature (ºC), and reaction
time respectively.

ably tracks the optimal temperature trajectory and this pro-
vides good numerical average molecular weight values. The
neural network model was applied to the related system10.
To identify the system, pseudo-random binary sequence type
of heat input was introduced to the reactor and the reactor
temperature was measured.

The neural network was trained with the response data
obtained from the reactor and the model representing the
polymer reactor was built. The neural model had five inputs

 Table 1. Dynamic and theoretical NN-MPC result in two different
optimal operating conditions

Work Optimum Dynamic Theoretical-
number parameters NN-MPC
1 M0 = 6,092

T = 97
I0 = 0.0125
tf (s) = 7620
Mn = 52000 Mn = 33849 Mn* = 45814
m* = 0.5 m* = 0.33 m* = 0.45

2 M0 = 6,092
T = 92
I0 = 0.0150
tf (s) = 10200
Mn  = 52000 Mn = 30203 Mn* = 43096
m* = 0.5 m* = 0.36 m* = 0.48

NN-MPC is implemented to track the temperature of the
polymerization reactor. Neural network methodology of model
identification is applied for the polymerization reactor. The
control algorithm is implemented using the NN toolbox in
MATLAB. The controller is shown as an independent block
and the process is simulated as an analytic model.

A model predictive controller has good performance with
a prediction horizon and small control-weighting factor. In
Fig. 1, input changes versus time is given. Figs. 2 and 3
show the response of temperature controllers as plant and
NN outputs to set point changes. The error is determined in
the range of ± 0.03. All parameters utilized are given in Tables
2 and 3.

Theoretical NN-MPC simulating result for numerical av-
erage molecular weight values at optimal operating condi-
tions is also given in Table 1. The reactor temperature desir-

Fig. 1. Training plant input data for NN predictive control.

Fig. 2. Training plant output for NN predictive control.

Fig. 3. Training NN output for NN predictive control.



Etike et al.: Temperature control in polystyrene polymerization reactor by using neural network model etc.

2033

and an output. The activation function was taken to be Tansig
(x), Inputs (Ti-1, Ti-2, Ti-3, Ui-1, Ui-2), Target (Ti). Two neu-
rons were found in the hidden layer of the artificial neural
network. The open-loop response of the experimental artifi-
cial neural network model, the theoretical NN model and an
analytical model is in good agreement with maximum error
of 2.5ºC.

Neural Network Model Predictive Control System used a
neural network model for the prediction of a step ahead.  The
control process was achieved with linear optimization based
on the cost function. The cost function to be minimized is
given as

J(u,t) =

uNN
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where N1, N2, Nu, are minimum, maximum costing horizons
and control costing respectively11.

The MPC tuning parameters were set10. The MPC crite-
rion is optimized employing the gradient descent optimiza-
tion technique. One-step-ahead optimization is shown as
follows:

J = [w(t + 1) – ym (t + 1)]2 + [u (t)]2 (2)

In eq. (2) above, as > 0. The control weight factor, u (t) =
u (t) – u (t – 1) and ym(t + 1) is the output of a step forward
ahead in the artificial neural network. To bring the controller,
ym(t + 1), a value in a step to the required value, w (t + 1),
may require very much effort. For the good reconciliation
between the control and the changes in the control effort in
the optimization of the cost function, 0 was assumed.

Having ensured that the artificial neural network model
has been formed, the optimization of the cost function was
realized using the three steps non-linear dynamic model
shown below:

L e (t + 1)
u (t) = u (t – 1) – ———— e (t + 1) ————— (3)

1 + L u (t)

where L > 0 is the optimizing step and e (t + 1) = w (t + 1) –
ym(t + 1). It has been proved that a three-layer feed-forward
neural network has the capability of universal function ap-
proximation.

The formed artificial neural network model is given in eq.
(4) as:
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v is the weight. s (.) is represented as follows:
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The sensitivity e(t + 1)/u(t) is derived from the neural net-
work model as follows:

Table 3.The weights and bias values of the NN for the polymer
experimental system

IW{1,1} LW{2,1} b{1} b{2}
–71.0043 1.3569 95.5491

–0.020209
0.0081864
–0.001663
–0.009824
0.0039121

–0.50827 –88.402
3.5582
–40.5218
35.4169
9.2695
0.50177

Table 2. Parameters for NN model and NN-MPC
Size of hidden layer 2
Sampling interval 2 s
Delayed plant inputs 2
Delayed plant outputs 2
Training samples 5000
Maximum plant input 70 Cal/s
Minimum plant input 0 Cal/s
Train epochs 200
Train function Levenberg-

Marquardt
Activation function Tansig (x)
Cost horizon  (N2) 2
Control horizon (Nu) 2
Control weighting factor () 0.01
Search parameter (a) 0.001
Iterations per sample time 2
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The mathematical model description of the artificial neural
network obtained upon substituting the calculated weight and
bias values is given eqs. (7–9).

N1 = 11Ti–1 + 12Ti–1 +13Ti–3 +
+ 14Ui–1 +15Ui–2 + b1 (7)

N2 = 21Ti–1 + 22Ti–1 +23Ti–3 +
+ 24Ui–1 +25Ui–2 + b2 (8)

Ti  = 
N1

1
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The weight and bias values (Table 3) for the trained artificial
neural network were taken and the algorithm for the pre-
dicted artificial neural network control was written in visual
basic programming.

Results and discussion
The following experiments were performed to verify the

sensitivity of the control systems and calculate the control
and system parameters. The parameters like weighting fac-
tor, sampling interval, the number of iterations within a sam-
pling interval were determined using the trial and error
method.  Typical set point tracking results are shown in Fig.
4. Settling time of response with (/(1 + )) = 5 was found
to be much shorter than the one obtained with (/(1 + )) =
0.1. The best values of the set of tuning parameters for the
NN-MPC method were selected and also the most suitable
value of the parameter was taken ((/(1 + )) = 5. This
group of parameters value was used to carry out the required
experiments.

Since the controlled variables were chosen as the reac-
tion temperature the control was, therefore, aimed at mak-
ing the reaction occur at the optimal temperature profile. When
the reactor solvent medium was at the steady-state condi-
tion with definite values of heating and cooling flow rate, ben-
zoyl peroxide was added. Furthermore, the temperature,
being an exothermic property of the reaction, increased and

the NN-MPC algorithm was applied to control the reactor
temperature at the optimal trajectory.

In the control of the polystyrene reactor, NN-MPC algo-
rithms which was written in a visual basic programming lan-
guage was used and the most appropriate NN architecture
was obtained by using 2 neurons in the hidden layers. The
parameters, weighting factor, sampling interval, the number
of iterations within a sampling interval were chosen by utiliz-
ing trial and error technique.  The best method of the training
of NN was selected as the Levenberg-Marquardt algorithm
and used in the control step. Many data which were used in
the training were collected using the experimental system.
To obtain the polymer with the desired characteristics, the
temperature control of the reactor was carried out over the

(a) (/(1 + )) = 0.1

(b) (/(1 + )) = 5

Fig. 4. The response of temperature controller to set point changes.
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optimum temperature profile by NN-MPC algorithm and the
results of the control are presented in Fig. 5. PID control
result for I0 = 0.00125 is given in Fig. 6. PID parameters
were found using Cohen-Coon method as Kc = 18.55, I =
2.428, D = 0.361. Where Kc, I, D represents controller
gain, derivative time, and integral time respectively. In com-
parison with NN-MPC control result, the fluctuations occurred
are more rapid and large. So, NN-MPC controller for track-
ing temperature path is more effective than the PID controller.

Fig. 6. Temperature PID control profile (I0 = 0.0125 mol/L).

(a) I0 = 0.0150 mol/L, Exp. number (1)

 (b) I0 = 0.0125 mol/L, Exp. number (2)

Table 4. Experimental NN-MPC and experimental PID for two
different optimal operating conditions

Exp. Optimum Experimental Experimental
number parameters NN-MPC PID
1 M0 = 6,092

T = 97
I0 = 0.0125
tf (s) = 7620
Mn = 52000 Mn = 51739 Mn* = 38428
m* = 0.5 m* = 0.63 m* = 0.44

2 M0 = 6,092
T = 92
I0 = 0.0150
tf (s) = 10200
Mn = 52000 Mn = 56215 Mn = 50299
m* = 0.5 m* = 0.66 m* = 0.65

Fig. 5. Temperature NN-MPC control profile.

Numerical Average Molecular Weight determined from
the experiment NN-MPC, PID is given in Table 4.  As can be
seen from Fig. 6, the reactor temperature closely follows the

optimal temperature trajectory without exhibiting significant
fluctuations, and this provides to obtain molecular weights
showed a very high tendency of approaching the controlled
one. That is to say that, the targeted polymer in this work,
which was the one with the numerical average molecular
weight of 52000 g/mole, has been approximately achieved.
As can be seen from Table 4, Numerical Average Molecular
Weight in the NN-MPC system is better than the one in the
PID controller.

Conclusions
Experimental and theoretical implementation of NN-MPC

algorithm was achieved successfully to track the tempera-
ture on a predetermined trajectory in a batch polymerization
reactor. The results obtained from the Neural Network Model
Predictive Control were found very satisfactory by compar-
ing with the experimental results of the work carried out by
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Özkan et al.12. In the cases studied, the temperature control
with the NN-MPC algorithm was performed better than the
one obtained using the PID controller.
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