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This paper aims to investigate the efficacy of adaptive Kalman filters for power system harmonics estimation. Significant in-
crement of non-linear loads is responsible for the presence of harmonics in power signals which deteriorates the power qual-
ity. Towards the improvement of power quality, estimation of the harmonic components is an essential task which has been
proposed to be carried out by adaptive Kalman filter and its nonlinear variants. The paper investigates the suitability of ad-
aptation algorithms for harmonics estimation and recommends an appropriate choice of adaptation algorithm. In addition to
this, this paper presents a scheme of joint estimation of fundamental frequency along with the harmonic parameters using
the nonlinear variants of adaptive Kalman filter. From the relative performance comparison of adaptive nonlinear filters dur-
ing harmonics estimation adaptive Cubature Quadrature Kalman filter is recommended for power system harmonics estima-
tion for its performance accuracy, numerical stability and reasonable computation cost.
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Introduction

In electrical power systems, power signals get perturbed
from pure sinusoidal waveform due to presence of harmon-
ics. Reason behind the existence of such harmonics rich sig-
nals is mainly because of the increasing demand of non-
linear loads comprises of power electronics based devices,
high power industrial loads, etc. which results in deteriora-
tion of power quality!. Therefore, it is indeed an essential
task to estimate harmonics with accuracy to take corrective
actions for power quality improvement. There are several
non-parametric methods of harmonic estimation which in-
cludes methods based on Discrete Fourier Transform (DFT),
Fast Fourier Transform (FFT), Least Mean Square (LMS),
Recursive Least Square (RLS) and other Recursive algo-
rithms2. Kalman filter (KF), reportedly, is a simple and strong
candidate for estimation of harmonic parameters of a power
signal corrupted with measurement noise and is given pref-
erence as it is free from the shortcomings of the other meth-
ods?®. Therefore, the presentworkers have focused on Kalman
filter based harmonics estimation.

However, Kalman filter has a restricted application when
non-linearity is introduced in the measurement equation. In

such situations the non-linear estimation is carried out by
nonlinear variants of Kalman filters out of which Extended
Kalman Filters (EKF) is the most popular. In the paper* Ro-
bust Extended Kalman Filters (REKF) is presented for track-
ing time-varying harmonic components. But as the degree of
non-linearity in the signal increases, the performance of EKF
deteriorates due to linearization of significant nonlinearities.
As an alternative, UKF has been used in®, where the har-
monic estimation in microgrid is done and UKF outperforms
EKEF. Still, for high dimension non-linear signal, the accuracy
of UKF deteriorates. CKF is, therefore, introduced in® based
on spherical cubature rule, as an alternative to UKF which
leads to nominal computational effort and linearization prob-
lem is also taken care of, as CKF is based on non-linear
model. The CKF is free from tuning parameters like UKF and
has comparable estimation accuracy of UKF.

Several other filters such as Local Ensemble Transform
based Kalman Filter (LET-KF) is used in” which compared to
Ensemble Kalman Filter (En-KF) reported in, revealing that
LET-KF outperforms En-KF in terms of accuracy and com-
putational efficiency.

In a linear system, the best estimation for a non-adaptive
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filter is possible only when the measurement and process
noise covariances i.e. Q and R are known a priori. In prac-
tice an arbitrary choice of noise covariance due to the lack of
knowledge leads to the divergence of the estimates. For sat-
isfactory performance of Kalman filter proper tuning of Kalman
filter is essential. Improper tuning of noise covariances se-
verely degrades the performance of the filter and may cause
divergence. Therefore, large number of cases needs to be
undertaken for offline tuning of KF. Adaptive Kalman filters
can avoid this by online tuning/adaptation of the noise cova-
riance. Early works on KF®-"" report on auto tuning of noise
covariance by online adaptation using the parameter esti-
mation methods, viz. Maximum Likelihood Estimation (MLE),
Maximum a Posterior (MAP) respectively. The performance
Kalman filter incorporated with the adaptation algorithms for
harmonics estimation has been explored in this paper. For
static harmonics estimation (where amplitude of harmonics
remains constant) usually the system dynamics is hardly af-
fected by system noise and therefore the noise covariance
should be of lower value. If the relative difference between
the true noise covariance and the noise covariance initial-
ized for the filter is high then the estimation accuracy for
non-adaptive KF degrades significantly. AKF can adapt online
the inaccurate initial choice of noise covariance and ensure
satisfactory estimation result. During the dynamic harmon-
ics estimation where the amplitude of harmonics are time
varying the system dynamics is modeled as random walk
model with time varying noise covariance. In such situations
the use of AKF is highly recommended.

When along with harmonics the fundamental frequency
needs to be estimated the measurement equation becomes
nonlinear and AKF cannot be employed. For such joint esti-
mation problem adaptive Extended Kalman filter (AEKF) and
its successors may be employed. In this work along with
AEKF, Adaptive Cubature Kalman Filter (ACKF) and Adap-
tive Cubature Quadrature Kalman Filter (ACQKF) have been
employed and their relative performance has been carried
out.

Afew works have been reported in literature where adap-
tive Kalman filters or their nonlinear variants are employed
in power system harmonics estimation. A self-tuning Kalman
filter algorithm is applied for harmonic estimation in'2 where
the harmonic parameters are time varying. The adaptation
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was performed on the basis of an intuitive adaptation algo-
rithm. In'3 the value of process noise covariance is switched
between different values on the basis of a hypothesis framed
on t-statistics.

Hybrid genetic algorithm and adaptive particle Swarm
optimization based Unscented Kalman Filter (UKF) is devel-
oped in' to estimate the power system harmonic compo-
nents. The hybrid Genetic Algorithm and Adaptive Particle
Swarm Optimization algorithm is used to estimate the pro-
cess and measurement noise covariance matrices by mini-
mizing the Root Mean Square Error (RMSE) of the UKF. Here,
the approach of standard parameter estimation methods has
not been explored.

In this paper a comparative study of three different ver-
sions of adaptive Kalman filter has been presented along
with its nonlinear version. The contributions of this work are
listed below:

Innovation based Q adaptive KF has been employed for
harmonic estimation of a power signal perturbed with
Gaussian noise where direct adaptation based on MLE
method, MAP based Q adaptation and intuitive Q scaling
methods of adaptation have been validated.

Performance of these adaptation algorithms has been
investigated based on RMS error from Monte Carlo simula-
tion. MLE based direct adaptation of Q is advocated over the
other methods of adaptation.

Q adaptation algorithm is also demonstrated for dynamic
harmonics estimation where the amplitude of harmonic sig-
nal is time varying.

Superiority of Adaptive CKF with MLE based direct Q
adaptation is exemplified over its competing algorithm of Q
scaling and MAP based CKF and also over non-adaptive
CKF during joint estimation of frequency and harmonic pa-
rameters with unknown process noise covariance.

New algorithm of Adaptive Cubature Quadrature is also
formulated and validated with harmonics estimation prob-
lem. This is one of the non trivial contribution of this work.
Superiority of the ACQKF is demonstrated over Adaptive CKF
during harmonics estimation. The Adaptive Cubature Quadra-
ture Kalman filter has been introduced to demonstrate its
superiority amongst its competitors such as Adaptive
Cubature filter, Adaptive Extended Kalman filters from the
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performance comparison carried out in this paper so that
this newly formulated adaptive filter may be promoted for
real time applications.

Harmonic estimation problem

In harmonic estimation problems, the designer needs to
estimate the amplitude and phase of the harmonic compo-
nents. Along with that, fundamental frequency of the signal
may also be needed to be estimated. The nonlinear dynamic
systems can be expressed® by the following state space
equations.

Xy = F(Xyq) * by ()

Yi = hixg) + v 2)
where X, is the state vector, z, is the measurement vector, h
(.) and f{(.) are the nonlinear measurement function and state
dynamics respectively. The vectors, L, represents Gaussian

process noise W, ~ N(0,Q) and the vector v, represents
Gaussian measurement noise v, ~ N(0,R).

When frequency estimation is not required the system
becomes linear and Kalman filter can be applied in that case
for estimation as explained later.

Generally, a power signal containing harmonics and noise
can be represented’ by

N
Yk = 2An sin (nkas + (I)n) +Adce_adeTS +g, (3)
n=
where, N represents the number of harmonics,  is the an-
gular frequency, ¢, being the phase of n-th harmonic com-
ponent. A is the DC component amplitude. Sampling time
period is given by T. k is discrete time step. The exponential
term e~%ackTs provides the decaying part of DC component.
The noise in the measured signal is denoted by ¢,

For state estimation, we need to simplify the above ex-
pression. This is carried out by expanding the exponential
term using Taylor’'s expansion method’ and ignoring the
higher order terms as.

’L\dce_md‘;ﬂs =Age=AdcackTs (4)
Substituting (4) in (3) we get

N
Yk = D Apsin (nokTs + ¢ )+ Ay, - Ag0tyckT+ €, (5)

n=1

Further expansion of (5) leads to (6)

N
Yk = D A,sin (nokT) cos (¢,) +

n=1

N
D A, 008 (NkT) sin (¢ ) + Ay~ Ag0tgck T+ e, (6)
n=1

Eq. (6) can be expressed in terms of state space model as
given by (7)

Xy = F_4Xjq * Ky (7)
where the state transition matrix of dimension (2N + 3) is
given by (8)

0 0
-0 0

e
I
-0 O O O O O

The state vector is selected as

X = gy X

X1 = [Aq c08 04 Ay sindq - Ay cos Gy Ay Sin Oyl

Xok = [Adc Adcq)dc ] )
The measurement equation in linear form can be represented
as

Yk = Hxe o, (10)
where,

H,=[sinwk coswk - sinwk coswk 1 1]

The nonlinear measurement equation becomes linear when
the fundamental frequency, @ is known a priori. In that case
the order of the system state reduces from (2N + 3) to (2N +
2).

The nonlinear measurement equation can be alternatively
expressed as

h(x,) = x, (1) sin (x, (2N + 3)kT) +

X, (2) cos (x, (2N + 3)kT) +
X, (2N) cos (x, (2N + 3)kT) +
X (2N +1) = kT x, (2N + 1) (1)

Therefore, the amplitude, phase, the decaying DC compo-
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nent of state as related with the state vector as

A, = X2(2N) + x2(2N - 1) (12)
b, = tan™" (x, (2N)/x, (2N - 1) (13)
Age= X (2N +1) (14)
Oge = Xy (2N + 2)Ix, (2N + 1) (15)

Algorithm for adaptive filters
Underlying frame work of Kalman filter:

Kalman filter (KF) is a robust method for estimation of
harmonic parameters of a power signal corrupted with mea-
surement noise. KF is simple and robust. It's a Recursive
Data Processing Algorithm. For the situation when frequency,
 is known, both the system and the measurement equa-
tion becomes linear and Kalman filter can be employed for
harmonics estimation. At first the state vector x, is estimated.
Thereafter, the harmonics parameters are obtained as given
by (12) to (15). The well known Kalman filter algorithm from®
has been employed as an underlying framework for adap-
tive Kalman filter when the process/system noise covariance,
Q, remains unknown.

Underlying framework of EKF:

When the fundamental frequency needs to be estimated
to check its variation, the nonlinear filters are necessitated.
Extended Kalman filter (EKF) is widely used nonlinear filter
for state estimation which is formulated based on lineariza-
tion. After linearization it follows the same algorithm for
Kalman filter. However, at each prediction and correction
steps the nonlinear state equation is linearized about pre-
dicted estimate and the nonlinear measurement equation is
linearized about corrected estimate. For the brevity of the
paper algorithm has not been presented and readers are
requested to refer'®.

Underlying framework of CKF and CQKF:

Cubature and Cubature Quadrature Kalman filters are
sigma point filters for nonlinear estimation which ensure su-
perior performance over EKF when the degree of nonlinearity
in the system or measurement increases. The CKF is a sim-
plified algorithm which can be easily obtained from Cubature
Quadrature Kalman filter which is based on Cubature Quadra-
ture rule'®. Cubature Quadrature rule'® is based on Spheri-
cal Radial rule of numerical approximation of Gaussian inte-
grals. For n-th order integral, the number of quadrature points
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will be 2nn” where n’” is the order of radial integration. When
n” =1, the Cubature Quadrature rule is reduced to Cubature
rule whichis same as'’, generated from based on the spheri-
cal cubature rule.

Calculation of Cubature Quadrature points and weights:
The quadrature points', {; are obtained as

ZKJ- e; fori=1--,n

Ci = (16)

ZKJ- e, fori=n+1---2n
With weights', w. are obtained as
1 n''T(c + 0"+ 1)

W= . 2
2nr'(n/2) g [L‘,),‘, (M)]

where A; are the roots of n’-th order Chebyshev Laguerre
polynomial'®, L% with o = n/2 - 1 given by (18)

L% =" - % (" + o)A~

(17)

n'(n"—1)
2!
For more details readers are requested to refer the base
paper'® where from the prediction and correction steps are
also taken.

'+ a)(n'+ a—NA"2— ...

=0 (18)

(i) Initialization: Initialize X o Iso, QR
(i) Prediction step:
Compute Cholesky Factor such that”

. . . T
Pk_1 =Sk (Sk—1)
Choose quadrature points as

Xi=Sk1Gi+ Xg_y

N
Compute X, = > f(x;)w;
i1

F) - %) (F ) - %) W (22)

=0
I
0
+

™M

X is predicted estimate and 5,( is predicted error covari-
ance
Q denotes the assumed value of process noise covari-
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ance. For Q adaptation, Q-= ék_1.

(i) Correction step:
Compute Cholesky Factor such that

— = =T
Pe = Sk(Sk) (23)
Select the points as ; = S, £; + X (24)

The predicted estimate of measurement

N
2= 9w (25)
=1

The following covariance can be computed as

xz y _ — T
P, :Z(Xi_xk)(g(Xi)_zk) Wi (26)
j=
2z y — — T
PP =2 (9(Xi—2zk)(9(Xi)-2¢) W, 27)
=1

The filter gain K is given by

—\ -1
K¢ = P&(P& +R) (28)
X=X+ K (yi —2zy) (29)
P = Pe—Ki(PE + R)K] (30)

X is a corrected estimate of state and P, is a corrected
error covariance.
Adaptation algorithm:

In face unknown process noise covariance, Q, the auto
tuning of Q is necessitated. Towards this objective three dif-
ferent approaches for adaptation are presented.

(1) Direct Q adaptation based on Maximum Likelihood
Estimation8:

Compute the innovation sequence as

9% =Yk 2 (31)
The estimated innovation covariance can be computed from
a sliding window of epoch length L

. k
Co, =1 3 SR

32
j=k—L+1 ( )

Direct adaptation algorithm for Q,

Q) =K Cop Ky (33)
(2) Scaled Q based on Covariance Matching method '8:
Adapted Q is obtained as

Qy = 14Qy_q (34)

trace(égk - R)

WP, B = trace(Pky— R)

(39)

(3) Q adaptation based on maximum a posterior
method'®:

Adapted Q is obtained as
P T . s
Q=22 {(Xj— f(Xf—1))(Xj—f(Xj—1))T} (36)

Problem statement

A stationary power signal has been given below that con-
tains 18t 3 5t 7t and 11t order of harmonics and also a
DC component’:8. The power signal is corrupted with a mea-
surement noise, L, of noise covariance R = 0.0025.

Vi =1.5sin (wkT+80° +0.55 sin (3wkT, +70°)

+0.2 sin (5w kT +45°) +0.15 sin (TwkT + 36°)

+0.1sin (11kT, +30°) + 0.5 09K s + 1y, (37)
The objective of this work is to estimate the amplitude, phase,
DC component and the fundamental frequency. The process
noise covariance to generate the truth model is selected as
Q = 1078x1,, 1,. However, for the estimator it is assumed
unknown and therefore initialized with an arbitrary choice of
Q o 1072 xQ. The initial value of the true state vector can
be obtained using w = 314 rad/s in (9). The initial choice of

state for the filter is chosenas X, =0.98xx,and B, =l15.1y.

Results and discussion
Simulation results for AKF:

The results for the harmonic estimation using Adaptive
Kalman Filter (AKF) are given by Figs. 1-4. Figs. 1 to 3 show
the true and estimated states. Performance of different Q
adaptive KF can be observed here. Fig. 4 presents the Mean
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Fig. 2. True and estimated third phase for a representative run.
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Fig. 3. True and estimated DC amplitude for a representative run.

Square Error of fundamental amplitude from Monte Carlo
study with 500 runs. It is observed that for non-adaptive KF
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Fig. 4. Fundamental amplitude MSE and error covariance for 500 MC
runs.

and also for MAP based method the estimation is not ac-
ceptable. Large errors in the estimated values are noted as
compared with the true value. For Scaled method, there is
considerable improvement in the estimation compared to the
other two methods. However, for direct method, a better es-
timation performance is noted as the error is much lower
compared to the other methods. Therefore, the direct method
is preferred for adaptation.

18 . T T T T T
175+ AKF scaled _
AKF-direct
7Rl True value e
: : AKF-MAP o
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L : s 4
165 ot
- cirg
Z 18] S : i ]
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Fig.5. True and estimated fundamental amplitude for a representa-
tive run.

Results for dynamic signal:

The power signals with time varying amplitude are called
dynamic signals. AKF is applied to the dynamic signal as
given in’. The superiority of the MLE based direct adapta-
tion is demonstrated for dynamic signal as well.
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Fig. 6. Fundamental amplitude MSE and error covariance for 500 MC
runs.

Simulation results for ACKF:

In the above case studies the measurement equation is
linear as @ is known. When the frequency needs to be esti-
mated the measurement equation becomes nonlinear. To deal
with this problem, Adaptive CKF is applied and a compara-
tive study has been carried out for investigating the best adap-
tive methods amongst the presented methods.

Parameter values considered for this filter are Q = 108
xl13413 and R = 0.0042. The initial choice remains the same.

However, the error covariance taken as B, = 1073x/5,5
with B, (1, 11) = 2.

From the previous observations, it is clear that for adap-
tation methods considered in this paper, MLE based direct

DC estimation
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: |
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0.492
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Time(sec)

Fig. 7. True and estimated DC amplitude for representative run.
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Fig. 8. Frequency MSE for 500 MC runs.

Frequency mse
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i i I 1 i
0 30 100 150 200 250 300
Time (sec)

Fig. 9. Frequency MSE for 500 MC runs.

adaptation methods gives best results compared with the
Scaled and MAP based methods. In this section, a compara-
tive study has been done between two non-linear adaptive
filters, i.e. AEKF and ACKF. Direct adaptation method is con-
sidered for Q adaptation of both the filters. It is observed
from Fig. 9 that ACKF is better than AEKF. Mean Square
Error for the estimates is obtained using Monte Carlo simu-
lation with 1000 runs.

Simulation results for ACKF:

Parameter values considered for this filter are Q = 102
xl;3,43 and R = 0.0042 . The initial error covariance taken as

ﬁo = 10‘3><I13X13 where the frequency component is having

B, (11,11) =2.

1907



0.5

J. Indian Chem. Soc., Vol. 97, No. 10b, October 2020

fiequency estimation

495

Frequency (in Hz)
»
o

895

True value
CKF
COKF

475
0

Fig. 10. True and estimated fundamental frequency for a representa-

i
50 100 150 200 250 300
Timeisec)

tive run.

frequency mse

— COKF

Frequency MSE

i I
a0 100 150 200 250 300
Time(sec)

Fig. 11. Frequency MSE for 500 MC runs.

179

o)
o
T

Amplitude (in p.u.)

o
T

CKF
COKF ]

True value

Fig. 12. True and estimated fundamental amplitude for a representa-

1908

i i
50 100 130 200 230 300
Time(sec)

tive run.

Amplitude MSE

95

90

&
=]

Phase (in degress)

&
=]

M+

70
1}

fundamental amplitude mse

i I
50 100 150 200 250 300
Time{sec)

Fig. 13. Fundamental amplitude MSE for 500 MC runs.

fundamental phase estimation

T
: CKF
CQKF
True value
i —__
A a2 7
i . i | i
50 100 150 200 250 300
Time(sec)

Fig. 14. True and estimated fundamental phase for a representative

Phase MSE

run.

Fundamental phase mse

T T T ¥

Timeisec)

Fig. 14. Fundamental phase MSE for 500 MC runs.

This section represents the comparative estimation re-
sults of power system harmonics for ACQKF and ACKF. The
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frequency estimation is shown in Fig. 10. It is observed that
ACQKF gives good estimation accuracy, as the estimated
value by it is much closer to the true value as compared to
that of ACKF. This is verified by the respective MSE plot as
shown in Fig. 11. Note that this estimation results have been
obtained for 500 Monte Carlo runs. In the same vein the
results are presented for the estimates of fundamental am-
plitude and phase. We can clearly see that estimated value
of ACKF is not following the true value and is also some-
times diverging. The respective MSE plots are shown in Fig.
11, Fig. 13 and Fig. 15. A close look to these MSE plots
reveals that mean square error for ACQKF is much less as
compared to that of ACKF which indicates its superiority over
ACKF.

Concluding discussions

Significant findings from comparative performance analy-
sis of different adaptive Kalman filters along with their non-
linear variants during power system harmonic estimation are
enumerated below:

Monte Carlo simulation demonstrates the superiority of
Maximum Likelihood Estimation based direct Q adaptation
over the MAP based and scaling methods. This is verified for
the dynamic estimation of power system harmonics.

For the joint estimation of frequency and the harmonic
parameters nonlinear variant of Q adaptive Kalman filters
are employed. An adaptive nonlinear filter viz. MLE based Q
adaptive Cubature Quadrature Kalman filter has been for-
mulated in this work and its superiority has been demon-
strated over the competing algorithm of Q adaptive CKF and
EKF.

On the basis of above findings MLE based Q adaptive
Kalman filter and Cubature Quadrature Kalman filters are
advocated for dynamic estimation of power system harmo-
nics.
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