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Electrification of vehicles is an upgraded solution to deal with global warming. Although, anxiety related with Electric Vehicle
(EV) usage is a great challenge to deal with. To avoid anxiety, selection of “appropriate” charging station at right time is nec-
essary. Concomitantly, charging of EVs in uncoordinated manner can be stressful for the grid causing power loss, and insta-
bility issues. Hence, in this paper, a new intelligent “Strategy for Appropriate Charging Station Assignment and Intelligent Sched-
uling” (SACAIS) algorithm has been proposed. In the first layer of algorithm, the relevant charging station and the shortest
path to reach the assigned Charging station for individual EVs has been done. After that, a combined scheduling of the ve-
hicles has been done to minimize the total daily charging cost incurred by CSO considering grid to vehicle (G2V) and Ve-
hicle to grid (V2G) mode simultaneously in the second layer of algorithm. Later to validate the robustness of the optimization
techniques, Wilcoxon Signed Ranked Test and Quade test has been performed.

Keywords: Charging scheduling, Dijkstra’s algorithm, grid to vehicles (G2V), linear programming, optimization techniques, ve-

hicles to grid (V2G).

Introduction

In this Anthropocene period, Global warming, urbaniza-
tion, and growing consumption of fossil fuels disrupting the
ecological balance hastily. Bring back the balance between
human made infrastructures and ecology required to be ad-
dressed as a significant component to renovate the energy
entree. From the literature, it can be seen that, air pollution
has the biggest impact on the environment'2. The fossil fuel
driven vehicles are mostly responsible for the air pollution
and to reduce it, deliberately, people are tending towards the
electric vehicles (EV), because of its zero emission features®.
However, the main anxiety of EV drivers are “WHEN” and
“WHERE” to charge the EV. Due to the poor charging infra-
structure and planning, most of the charging stations (CS)
are suffering from long queues and sudden breakdown at
middle of the road. Besides these, they are suffering from
long queues in CS, as they are unknown about the slot avail-
ability. In literature ', the authors were focused on the de-
sign of EVs. In'd, the authors were focused on Electric ve-
hicles Supply equipment (EVSE) to improve the charging

infrastructure, but very few researchers dealt with the anxi-
eties of EV owners. Therefore, more exploration is required
to get rid of such anxieties as mentioned earlier. Smart strat-
egies are needed to find out “appropriate” charging stations
for charging EVs at apt time. In', though relevant CS has
been identified, but the shortest path to reach that CS has
not been determined. In the other hand, charging of EVs in
uncoordinated is another major concern, since it may create
stresses on the utility, which may also cause increase of ac-
tive power loss, instability, voltage sag and so many adverse
effects'®. Many authors have taken various strategies to deal
with this issue. In™f, Vehicle to Grid (V2G) concept has been
adopted as a remedy to deliver surplus power of the battery
to the grid and can act as a spinning reserve'9. But here, the
battery degradation has not been considered during V2G
technique and simultaneous operation G2V and V2G mode
of operation also missing. In the literatures '™l the authors
have shown that, uncoordinated EV charging can cause more
active power losses and therefore coordination of charging
using dual mode of operation (G2V and V2G) can minimize
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the active power losses. Few of the authors introduced coor-
dinated charging process, where, EV act as a load or some-
times as spinning reserve, for the grid" (Lam et al. 2018),
where EVs either working on G2V mode of operation or V2G
mode of operation for a long duration. But the dual mode of
operation at shorter time interval has not been found, which
considered to be a major literature gap in charging schedul-
ing process'!!. In literature'™ simultaneous charging sched-
uling has been done in dual mode of operation (Jozi et al.
2017), but idle state of the vehicle (0 state) is missing. How-
ever, in' (Tingting et al. 2018) idle state has been consid-
ered butin comprehensive manner, which needs to be elabo-
rated more.

Therefore, from literature survey, it has been realized that,
there are several major factors, which have not been well-
thought-out in previous literatures. Consequently, in this pa-
per, the major contributions are as follows:

(1) The selection of “appropriate” CS has been done by
considering the availability of charging slots by using Integer
Linear Programming (ILPP).

(2) The uncertainty of traffic congestions has been con-
sidered during charging scheduling.

(3) As per the status of loads in the grid and the dynamic
tariff, coordination of G2V and V2G has been done in more
frequent manner (at 30 min interval).

(4) A recent optimization technique named Henry Gas
Solubility Optimization (HGSO) has been integrated with pro-
posed SACAIS algorithm.

(5) Statistical non-parametric analysis has been per-
formed to verify the consistency and robustness of SACAIS
algorithm.

Problem layout

Fig. 1. Main network with directional path and 30 nodes.
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Fig. 2. Overall diagram of problem layout.

No circular path or self-loop path has been considered
and all the paths are unidirectional. In Fig. 1, a road network
with 30 numbers of nodes are shown, where these nodes
are the road junction and the black lines implies the routes
from one junction to another junction. In road junction 11, 17
and 22, three charging stations are there. Likewise, for higher
node networks also the proposed algorithm could be appli-
cable. The main anxiety works on EV drivers are regarding
the actual timing and place of charge of the vehicles. It is
always not necessary that, nearest charging station have to
be the favorable one. It may happen that, the nearest charg-
ing station has a long queue or may be there are huge traffic
congestion, which will cause the vehicles to breakdown at
the middle of the road. This is a huge problem which needs
to be taken care of.

But, due to the unavailability of the data regarding the
traffic congestion, and to deal with these, from'°, it has been
observed that, generally traffic congestion follows General-
ized extreme value (GEV) distribution. Therefore, this type
of distribution has been considered to deal with traffic con-
gestion.

After assigning appropriate charging station, the main
challenge is to find out the apt path to reach the CS and
afterwards its charging scheduling procedure needs to be
done in such a manner, that the overall charging cost in mini-
mum. Consequently, it is very important to know the driving
pattern of the individual vehicles. To analyze the driving pat-
tern of individual vehicles, the distribution pattern of daily
arrival time, departure time, daily mileage and speed, needs
to be known. In Fig. 2, the charging scheduling procedure
has been shown, where multiple charging stations are there
centrally controlled by the aggregator. This aggregator coor-
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dinate between the CS owner (CSO) and the grid. And as
per the loading conditions and pricing set by the grid, CSO
make the charging-discharging decision in such a way that,
there will be win-win situation for both EV users and CSO.

Therefore, SACAIS can be alienated in two major level;
in first level, the assignment of relevant charging station can
be done and thereafter, in the second level of algorithm, the
charging scheduling of those vehicles will occur with the ob-
jective to minimizing the daily charging cost.

Formulation of objective function

The main objective function is the diurnal total charging
cost incurred by the CSO (CTO7) as shown below.

min{CTO"} (1)
which depends on total charging cost (C®") required for the
dual mode of operation, which is the summation of G2V cost

(C2Y) and V2G cost (CV26).

CTOT - f(Cch, de) (2)

Cch = f(CGZV’ CVZG) (3)

To calculate C62Y and CV26, the corresponding equa-
tions are as follow, i.e.

G2v _ sl ip S S rate,Pno
C _Z s:1( pno (CPno _DPno)><C )

xRTT(s) )
cV26 _ Z glﬂ( Z)no:1 (ano _ Dgno)_crate,Pno)
xRTTV26(S) (5)

where, s is the total number of slots, s is the slot number, tp
is the total number of PHEVs, pno is the PHEV number, C%,,,
is the charging strategy, D, is the discharging strategy,
Crate.Pno is the charging rate, which is considered to be 4
kWh (Charging an Electric Vehicle, [online]) and RTT is the
real time tariff.

Again, due to discharge of battery during V2G, battery
ageing occurred. Hence, battery degradation cost (C9) due
to the has been considered, which depends on various fac-
tors which can be found in'P:

by _ to
C™ = pno=1

C batt,Pno < Batt cap,Pno + Cost lab )>< | E VZGl
(LC battXBatt cap,PnoXDD) )

Constraints in SACAIS
(1) Charging rates:
The charging rate (C"a!:P0) should not exceed the rated
power limit (PWW"atd) as shown as below.
Crate,Pno < pWrated (7)
(2) Energy requirements:

Required energy (E™9) must be fulfilled within the par-
ticular time interval for individual vehicles so that, with par-
ticular charging rates.

s_out S rate,Pno _ req
2 52s i SThno €™ =E t

(3) Battery SOC:

The SOC of the battery should not go below the 20% or
the SOC must not exceed its maximum value.

SOC™N < SOCH,,, < SOC™a 9)

(4) No. of charging stations:
The number of charging station (CSX) should be less than
the number of vehicles (Pno).

CSK < Pno, where, ke no. of charging stations ~ (10)
(5) Charging and discharging strategy:

To assess the charging (CB,,,) and discharging strategy
(Dpp,) a@s shown as follows:

Pno

[C,L,,O, ..... ,CS—’”..cg,,o..,cgn—;’“',....,cg’,,o}(11)

1, if STS, =1,V s € PSP vPno e Z
Cpno =10, orelse (12)
0, Vseg PSP wpno e Z

. Dsoul

A1 S;
DPno: DPno’--’D X Pno -

Pno’ "+

- Dh| (13

1, if STS, =1,V s PSP vPno e Z
0, or else
0, Vsg PSP wpno e 7

DB,,O = (14)

To calculate the (11) and (13), (12) and (14) have been used.

The charging strategy for PEV_no! vehicle can be de-
fined by,
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STPno =
| SThuo . STot - STino -, STEE . STino | (15)
1, charging
STS,, =4 -1, discharging, ¥Pno e Z 16)
0, idle
where,
St o SThno- €™ =E™ v ProeZ  (17)

The energy discharged by all the vehicles can be formulated
as,
EV26 =59 D3y xc™™ v Pro e Z (18)
Again, the parking duration for PEV _no" will be given by,
toutProl (19)
The time horizon vector is given by T, where the 24 hin a

day has been divided into 48 equal slots and each slot is of
30 min.

s,Pno —
P - [tin,Pno, e ’tPno,' T

T =[1,...s,.,5] (20)
The number of cars arriving in a parking lot is denoted by the
vector 7 =[1,..,Pno, .. .to] (21)
Energy modelling

In order to satisfy the constraints, in (8), the equation for
energy modelling eq. is given as follows.

E"e4 = SOC'. Batt°@P|m°h (22)

eng;s® = SOC'. Batf°a .ns (23)
where, N e charging efficiency and n%S e discharging effi-
ciency.

Now, to calculate SOC', the corresponding eq. is be given
by,

S0C' =
1-soc?, when, SOC% > 1
(SOC® — S0C?), when, SOC? < SOC% < 1
0 , when, SOC® = Soc®
—(S0c® —soc®), 02 < SOC% < SOC®

(24)

where, SOC arrival (SOC?) and SOC departure (SOC%)
can be calculated by (25) and (26)9.
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S0C* = {1 - (d AERH ~Econ

SOC% = [(ETLAER) N 0.2%J “E,,

Solution strategy of SACAIS
First layer

In this layer, appropriate charging station for each and
every vehicle needs to be determined. To deal with this is-
sue, Integer Linear Programming Problem (ILPP), has been
used. Here, p be total number of PHEVs and chs be the total
number of Charging stations (CSs), where p, chs € {Z*}. Now,
matrix C, named assignment matrix, which can be expressed
as C (chs, p) where each PHEVs can be assigned to CS,
and it is the combination of assignment problem'” and as
well as transportation problems.

Due to dynamic nature of EVs, instead of (C (chs, p)), it
can be modified as (C (chs, p, 1)), where, t € time.

The main objective is to keep the SOC?" at its maximum
value, to find out the appropriate charging station.

max {SOC@(chs, p, t) -

> > &t (Eonlchs, p,t).x(chs, p, )

where, E,,, € consumption of PHEV's energy to reach its
appropriate charging station and x (chs, p, {) is the decision

variable. Here,
(chs, p, t) =

(27)

1, if EV, is assigned to CS ., at time t
p 9 ch (28)

x(chs, p, t) =
(ehs,p. 9 {0, otherwise

Subjects to,

fhsi”fx (chs, p,t) =1,V EV,

(29)

where,1 < p < EV and each vehicle can be reach only one
charging station at a time and p— Z+

3 o (ohs, p.t) < CS e, ¥ OS; —Z+  (30)

where 1< chs < CS ¢ the capacity of each charging station
should not exceed its maximum limit.

The first trip length d® should be the more than or equal
to distance of EVs from charging stations disP-¢1S,

i.e. disP-chs < goh (31)



Das et al.: Allocation of appropriate charging station and intelligent charging scheduling for on-road electric vehicles

Energy modelling for ILPP

The energy consumption at ideal condition and the prac-
tical condition are given byt

BattaPp. g
con = p— (32)
AERP
ap,p Ach
= Battc—d xECM (33)

con "~ AERP

The empirical formula for urban type road has been shown
below, where ECM is the Energy Consumption Multiplier™".

1.531

ECM =0.21+ (V_mj -0.001v™ (34)

Here, V™ is the modified speed, which has been derived from
the Greenshields’s traffic congestion model.

Using linear regression model using (35), the relation
between the change of velocity and jam density has been
shown ™.

ol {5]

where, vl is the free flow velocity, k is the jam density and
o is the jam coefficient.

(35)

Since jam density is uncertain in nature. Therefore, sta-
tistical distribution has been considered which follows GEV
distribution™. This is the combination of Fréchet, Gumbel,
and Weibull distributions.

d_\ k
(kd|k,c,u):[%jxexp —[1+k.k “J x

-2t
d_ k
[1+k.k “J
(e}

Dijkstra’s algorithm

After allotment of EV to their appropriate CS by ILPP, itis
important to reach the corresponding CS using the shortest
path from the current location of the EV, considering battery
capacity constraints. Here, the shortest route has been iden-
tified using Dijkstra’s algorithm. This can be called a greedy
algorithm also (Grbac et al. 2017).

(36)

Algorithm for Dijkstra’s shortest path

Initialisation

S = ¢ where, s € set 1, which contains vertices for which
shortest path has been finalised.

q = V[G]; Q € set of vertices for which the shortest path
is yet to be finalised.

while Q!= ¢
{
U = extract Min (Q) using heap sort;
S=Su{U}
foreach v € Adj[U] and notin Q
{
If(d[v]>d[U]+w)
{
divl]=d[v]+o;
7 [v] = Ur € set of parent nodes or predecessors

}

End

Second layer

After reaching of EVs to its corresponding charging sta-
tion, using telemetric system of EVs, arrival SOC, and charg-
ing status can be fetched. But here, for experimental pur-
poses, these values have been determined. Thereafter, the
Charging Station Operator (CSO) set its charging process
using dual mode of operation.

Henry’s gas solubility optimization
For minimization of diurnal charging cost, Henry’s gas
solubility optimization (HGSO) can been used?.

Fig. 3. The concept of HGSO, where, pressure (P, > P4) and this will
continue until all the gas molecule dissolves until it reaches to

its equilibrium.
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Flowchart of HGSO

Initiakize the mumber of gaz and its peddon using
28l =z 4 pand(0,1) + (278 — 2 (37)

£

Caleulate and initialize the Henry®s Gas constant, Partial
Preszure, and enthalpy to molar Gas constant ratien by, H'rc =
my +rand(0, 1) Py, = my +vand (0,10 CF, = my +
rand(0,1)(38),(39], (40)

v

Clustering ha: been done among similar tpe of gazes, having
Heury*: constant value Le. H}

¥

Identify the best gas i, in each cluster 7 having highest
solubilitiez and rank, asz per the solubility from highest to
lowest,

I: all gazes reaches ta itz
optimum solubility 7

Again H',"— and zolubility has been updated uzing Hf{t+
Ly = Hy(6)) = exp (—Clim-—31) (1)
soltt) =a« H{t+ 1) = p(t) 4n

v

Update the position of all the gas particles to keep balance
hetwean exploration and exploitation using (43) & (44),
where sol*!, & & F are the three contrel parameters,
ZHe+ 1) = 28} + F = rand + o + (254) — 2”(&:';'-

+ x rand = p = (sal¥(t) = Z¥ (k) — ZU(t)) (43
o= +expl— FHed + e/FHt) + &), € = 0.05(44)

*

Is all worst agents
reaches solubility?

Fig. 4. Flowchart for HGSO.

HGSO in SACAIS algorithm
Execution procedure, Results and discussion
The solution strategy for both first and second layer of
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optimization has been described using the following flow-
chart as shown in Fig. 5.

START

location of EV"s which needs to go to
charging station for charging

After reaching to the respective CS,
the type of vehicles, battery capacity.
arrival time, departure time and the

¥ required SOC hasbeen calculated
Detect the charging station which are
Teachable with the existing charge

At the same time. aggregator will
observe the load demand and RTT of
the energy at that instant.

b 4

¥
Detect the wafiic congestons and
point out the appropriate |

station. where slots are available and
energy consumpton is less, using ILP
h 4
Once the appropriate charging staton
has been identified. the shorest route
to reach that charging station has been
detected using Dijkstra’s algorithm

Based on the randomly generated
Charging strate gy. the energy
requirement has been calculated

™NO

=The energy has bean s atisfied I
that fixed tme interval?

Calculate the charging
cost
Update the each population using HGSQO

optimization by clustering and update the worst
gas agent using eq. (42).(43) & (44

Calculate the objective function and it
2 sponding strate gy

Simulate this for 30 dmes for each case by
taking 50 populatons and used 1200 iteratons

/ /

Make the data sets and make
non parametric analysis to
estabhish the robustness of the

algg@thm

Fig. 5. Flowchart of the work process.

Input data for test case 1

In test case 1, 30 vehicles are taken, which contains
PHEV30, PHEV40 and BEV (Battery Electric Vehicle) and
their specifications has been shown in'Z. The vehicles have
been chosen in such a manner that, most of them are of
lower battery capacity. Only few vehicles are having higher
battery capacity.

Basically, in urban areas during early morning and after-
noon, the road congestions and electrical loading can differ.
The traffic congestion during early morning and evening is
different. Due to the difference in electrical loadings real time
tariff set by the grid is also different. Therefore, in very obvi-
ous reason, the scheduling strategies for EVs during these
two scenarios should be different, which needs to be ob-
served.

Therefore, this test case, has been divided into two ma-
jor scenarios with respect to the timing. Each scenario is of
12 h. Test case 1, scenario 1 (C1S1), is starting from 00:00
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hrs and it will continue up to 11:59 hrs and for test case 1,
scenario 2, (C1S2), the timing is starting from 12:00 hrs and
will continue till 23:59 hrs.

Input data for test case 2

In the test case 2, total 50 vehicles have been consid-
ered, which contains Hyundai ionic, BMW i322 and Nissan
leaf?®, whose specifications are given in23. This test case
contains vehicles with higher battery capacity. The case 2,
scenario 1(C2S1) and case 2, scenario 2 (C2S2), have been
chosen considering the precious concept as test case 1.

Network

To begin the simulation, at first a network has been cre-
ated, which contains 30 nodes and 151 edges as shown in
Fig. 6. The network has been made critical to replicate some
practical scenario. Three charging station are there at node
number 11, 17 and 22 with slot availability in 12, 8 and 10

respectively. This network has been used to simulate for test
case 1.

Again, for simulation of test case 2, a bigger network has
been created, which contains 51 nodes and 352 edges. The
path length is of higher and no circular paths are there. Node
number 11, 17 and 22 has been considered as CS, where
15, 18 and 17 slots are available respectively. All paths are
unidirectional as shown in Fig. 7.

Arrival and departure time of vehicles in charging sta-
tion

In C1S1, the average time for arrival and departure time
of cars in CS are 4:00 hrs and 10:00 hrs respectively°. Again,
for C1S2%, it has been observed that arrival and departure
time of vehicles are 14:00 hrs and 22:00 hrs respectively.
For both the scenarios, standard deviation is of 1.2 h. These
two attributes follow normal distribution and the values are
shown in graphically in Fig. 8 and Fig. 9.

Speed of the vehicles

From? it has observed that, the velocity of the vehicles
follows GEV distribution, as discussed previous section. The
mean speed is of 60 km/h2€, where, the shape factor is of
6.8 and the scale factor is negative, for both C1S1 and C251.
Again, for the C1S2 and C2S2, the free flow average velo-
city is 55 km/h2e. Using Fig. 10, the input data for free flow
velocity has been shown.

el ok
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3 1 i L
Moge 43 W 51 Wode 30
- Hode 46 N 44
Noe 43 Hode s -
Modede L . "'ﬁ .
Hode dF
42 Noda 8 Node Jicde 8 W ZRARIS g
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Node 75 @ Motel By "ﬂ:" Hada 15
Mede 10 hode 14 -
u“- Mipda |1 = Mode 23
Node Mads 24 - Flosde 31
Hode 34 h n' - --'ﬂn
= = ey S en T
Mo 3 Mods 33 -_'.!li Mads 93 —“;.'1,.

Fig. 7. The network with 50 nodes and 352 edges.
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Fig. 10. Distribution of free flow velocity.

Vehicle congestions and jam coefficient

The most challenging aspect of the proper charging sta-
tion allotment is vehicle congestions. From2d, it has been
observed that, urban congestion follows GEV distribution with
the shape factor of 10 and the scale factor is of negative. For
every case, jam coefficient 800"t The input data has been
shown graphically in Fig. 11 and Fig. 12. Again using Fig. 13
and Fig. 14, the jam density of roads from vehicles to the
probable CS have been shown.

Daily trip distance (DTD) and charging trip distance
(CTD)

From literatureZS, it has been observed that the average
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daily mileage of the vehicles is generally of 55 km with the
standard deviation of 10 km. Again, for bigger cities (Test
case 2) the average mileage is of 125 miles, with the stan-
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Fig. 17, 18. Daily mileage for C1S1 and C2S1 and daily mileage for
C1S2 and C2S2.

dard deviation of 10 miles?®. These two parameters follow
normal distribution, as shown Figs. 17 and 18.
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Appropriate charging station allotment and finding
shortest path to reach CS

As per the solution strategy, using ILPP, the appropriate
charging station for individual vehicles has been determined
for both the scenarios of Test Case 1 and 2. Firstly, an ideal
scenario has been considered where, traffic congestions have
not been considered. Only the CTD and availability of slots
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have been considered to identify the appropriate charging
stations for corresponding vehicles as shown in Figs. 23, 25,
27 and 29.

Again, ILPP applied for same number of vehicles consid-
ering traffic congestions and its effects on energy consump-
tions of vehicles has been observed which have been shown
in Figs. 24, 26, 28 and 30. More elaborately, it can be said
that, in Fig. 23, the allotment of vehicles in appropriate CSs
are shown. Due to traffic congestion some vehicles have been
changed their respective charging stations, which can be
observed from Table 1. Likewise, for C1S2, C251 and C2S2
also, EVs have changed their respective CS due to the traf-
fic congestions, as shown in Table 1 and can be validated
using Figs. 25-30.

After successful allotment of appropriate charging sta-
tion, next thing is to decide the shortest route to reach its
corresponding CS. For which, Dijkstra’s shortest path algo-
rithm has been applied. Using Fig. 35, the route for vehicle
number 1 has been shown. Likewise, for C1S1, C1S2, C2S1
and C2S2, the path of vehicles to reach their corresponding
CS has been tabulated form in Tables 2 and 3 respectively.

[
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(=% B
[ h
Cnadd

Fig. 24

Fig. 23, 24. Allotment of charging station for C1S1 in ideal condition
and in practical condition.
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Fig. 25, 26. Allotment of charging station for C1S2 in ideal condition
and in practical condition.
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Fig. 27, 28. Allotment of charging station for C2S1 ideal condition and
in practical condition.

Real time tariff (RTT) for charging scheduling

A real time data from National Electricity Market of
Singapore2® (EMCSG-online, 2020) has been considered for
the combined charging scheduling.
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Fig. 33, 34. Energy consumption for C2S1 and C2S2 in practical con-
dition.

Fig. 30

Fig. 29, 30. Allotment of charging station for C2S2 in ideal condition
and in practical condition.
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aE £ 40 Table 1. Vehicles changed their respective charging stations while
.E Eg 20 practical aspects have been considered
x 0 Scenarios Vehicles ID, changed its CS in practical scenario
SHPp PR 'P-.*"‘-bﬁa““’a’j.{*‘ﬁﬁﬁﬁ’ﬁﬂ C181 4,11,14,17, 25, 27
Mo of Vehicles C182 1,3,17,30
C281 1,6,7,10, 11,13, 14, 15, 16, 24, 25, 27, 28, 29, 30,
Fig. 32 31, 33, 35, 36, 37, 39, 41, 45, 48, 49, 50
C282 1,2,4,9,11,13,14,16, 17,19, 20, 21, 22, 23, 24, 25,

Fig. 31, 32. Energy consumption for C1S1 and C1S2 in practical con-

" 29, 31, 32, 36, 37,41, 43, 44, 48, 49, 50
dition.
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Fig. 36. Vehicle route one of the vehicles in test case 2.
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Table 2. Path for 30 vehicles in smaller network

Vehicles route to reach CS CS
First scenario Second scenario
1-9-11 1-9-5-11 1
4-5-7-11 5-7-11
6-7-11 8-7-11
7-11 7-11
8-7-11 6-7-11
9-11 9-11
12-14-11 12-14-11
13-14-11 13-14-11
18-23-14-11 22-13-14-11
22-13-14-11 23-14-11
28-23-14-11 28-23-14-11
5-17 3-13-17
10-17 4-5-17
14-15-17 10-17
15-17 11-17
16-17 15-17 17
27-15-17 16-17
29-30-17 18-15-17
11-17 29-30-17
11-30-17
2-22 2-22
3-27-22 14-1-2-22
17-21-22 17-21-22
19-22 19-22
20-21-22 20-21-22
21-22 24-21-22
23-27-22 25-22
24-21-22 26-19-22
25-22 27-22
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Table 3. Path for 50 vehicles in larger network

Vehicles route to reach CS

First scenario
1-9-11
8-7-11

9-11
12-14-11
14-11
15-17-9-11
17-9-11
23-14-11
24-12-14-11
25-48-11
29-14-11
34-7-11
42-1-9-11
48-11
50-14-11
2-5-17
3-13-17
10-17
13-17
16-17
18-15-17
21-22-17
22-17
26-30-17
28-30-17
30-17
37-4-5-17
38-1-2-5-17
39-2-5-17

Second scenario
1-9-11
2-5-7-11
8-7-11
22-13-14-11
24-12-14-11
31-35-48-11
34-7-11
35-48-11
38-48-11
39-33-48-11
40-6-7-11
41-33-48-11
45-14-11
49-7-11
50-14-11
4-5-17

5-17
14-15-17
15-17
16-17
18-15-17
20-30-17
21-22-17
25-22-17
26-30-17
27-15-17
30-17
36-5-17
37-4-5-17
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Table-3 (contd.)

150

44-30-17 42-3-13-17 L

= 100
45-3-13-17 47-5-17 =
46-5-17 48-5-17 EH 0
11-17 11-17 EE 4
4-5-21-22 3-13-19-22 s 02 4 810121416 18 2022 24 26 28 30 32 34 36 38 40 42 41 45 48 50

L]
5-21-22 6-46-22 - No of =lots {time] { every 30 mins interval)
6-46-22 7-10-21-22 *S$: Singapore Dollar
7-10-21-22 9-18-19-22
19-22 10-21-22 Fig. 37. Real time tariff from month of February 2020.
20-21-22 12-13-19-22 Combined scheduling through aggregator
27-22 13-19-22 _ _
31-3-13-19-22 17-21-22 After successful allotment of EVs to their respective CS,
39.33-13-19-22 19-22 combined scheduling with dual mode of operation has been
33-46-22 232722 done to minimize the daily charging cost of the EVs, by sat-
35.37-46-22 28-19-22 isfying required energy, using G2V, V2G and idle mode (0
36-5-21-22 29-28-19-22 state) in simultaneous manner as per the RTT.
40-37-46-22 32-33-46-22 This has been performed for C1S1, C1S2, C2S1 and
41-33-46-22 33-46-22 C2S2 and its corresponding scheduling have been shown
43-37-46-22 43-37-46-22 by Figs. 38-41, where, yellow square is representing G2V
47-5-21-22 44-30-21-22 mode and blue spot is showing V2G mode. By using Figs.
49-19-22 46-22

38 to 41, Figs. 42 to 45 have been developed, where, the
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Fig. 38. Charging scheduling for C1S1.
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Fig. 39. Charging scheduling for C1S2.
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Fig. 41. Charging scheduling for C2S2.
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Fig. 42, 43. Participation of vehicles in G2V and V2G in C181 and  F19-44,45. Participation of vehicles in G2V and V2G in C281 and
participation of vehicles in G2V and V2G in C1S2. participation of vehicles in G2V and V2G in C2S2.

half an hour of operation has been plotted. It is desirable ~ Participate in V2G mode.
that, when the RTT is lower, the EVs should participate in From, Fig. 42, it has been observed that, since RTT is
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lower most of the vehicles are participating in G2V mode
and very few vehicles are participating in V2G mode. Again,
in C1S2, where RTT is higher, EVs should participate more
in V2G mode. But from Fig. 43, it has been observed that,
instead of V2G, EVs are participating in G2V mode. But, in
Test case 2, where number of EVs are more and the battery
capacity of the EVs are higher, in that scenario, by observing
the charging strategy, it can be realized that, in both C2S1
and C2S2, the vehicles are behaving exactly which is de-
sired as shown in Figs. 44 and 45 respectively. Therefore,
from the above observations, it has been analyzed that, for
better coordination of G2V and V2G mode of operation, it is
desirable to have higher number of EVs of higher battery
capacity. Lower number of vehicles with less battery capac-
ity is not a great idea for it. Moreover, from the above analy-
sis, and observing the Figs. 42, 43, 44 and 45, it can be said
that, for charging of EVs, the ideal session is from 00:00 hrs
to 11:59 hrs. EV owners, having higher battery capacity, can
participate more in V2G mode during the session i.e. 12:00
hrs to 23:59 hrs and can earn incentives by delivering the

surplus power of battery to the grid. Moreover, using HGSO
the daily charging cost for charging scheduling has been mini-
mized and to validate the superiority of this optimization, it
has been compared with a benchmark optimization, and from
convergence criteria as shown in Figs. 46, 47, 48 and 49, it
has been observed that, HGSO is giving better result. Each
scenario for individual test cases has been simulated for thirty
times and from Table 4, it has been observed that, the stan-
dard deviation for all the test cases are very low which signi-
fies that, for both HGSO and DE in SACAIS algorithm can
give consistent output. But for more authenticity of the ro-
bustness of SACAIS algorithm two non-parametric statisti-
cal analysis has been performed.

Wilcoxon signed rank test (WSRT)

From, Table 5, it can be assessed that, for all test cases,
the test statistic value is larger than the absolute value. This
signifies that the null hypothesis can be accepted?’. There-
fore, there is no significant change in the outcome of the
simulation results for both HGSO and DE in SACAIS algo-
rithm.
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Fig. 46, 47. Convergence characteristics of C1S1 and convergence characteristics of C1S2.
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Fig. 48, 49. Convergence characteristics of C2S1 and convergence characteristics of C2S2.

Table 4. Best cost, mean cost and the standard deviation for all the

test cases
Optimization Min. cost Max. cost Avg. cost Standard Best cost
techniques (S$) (S$) (W) dev.(c)  (S$)
C181
HGSO 3.9033 4.01378 39616  0.0353  3.9033
DE 40517 554986 4.8064 04312 4.0517
C182
HGSO 4689 558994 51564  0.2761 4.689
DE 50768 6.63917 58172  0.4463 5.0768
C281
HGSO 3.5092 4.83120 4.1047  0.4463  3.5092
DE 40122 51751 46023 0.3436 4.0122
C282
HGSO 42132 536723 48742 03777 4.2132
DE 50012 6.30260 5.6089 0.4526 5.0012

Quade test (QT)

Using Quade test29, from Table 6, it has been observed
that, for all the scenarios in both the test cases, the absolute
value from f-distribution table (Sheikh et al. 2006) is less than
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Table 5. Wilcoxon signed rank test for both the scenarios for test

case 1and 2
Optimization Confidence Test statistic value Abs.
interval  C1S1  C1S2 C2S1 (C2S2 value
HGSO (95%) 213 144 226 231 137
DE (95%) 1955 232 2055 2145 137

Table 6. Quade test for both the scenarios for test case 1 and 2

No. of Confidence Test statistic value Abs.
sample interval T T2 T3 T4 value
30 (95%) 93 56.54 2912 6164 418

the test statistic value. Hence, it can be said that, for all the
test cases, outcomes of HGSO is more superior and better
than DE in SACAIS algorithm.

Conclusions

This paper proposed a new “Strategy for Appropriate
Charging Station Assignment and Intelligent Scheduling”
(SACAIS) algorithm with the integration of optimization tech-
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niques. Proper allotment of CS for EV's has been performed
by finding shortest path to reach there, followed by minimi-
zation of daily charging cost of charging. From the results, it
can be that, if higher number of vehicles are connected to
the grid with battery capacity, then dual mode of operation
for charging scheduling is more apt. Again, due to the con-
sideration of jam density, it has been observed that, due to
the higher consumption of battery, daily charging cost is in-
creasing. Moreover, using HGSO and DE, the efficacy and
robustness of the SACAIS algorithm are ensured, which may
help to develop a smart phone application in near future us-
ing SACAIS algorithm.
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