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1. Introduction
Degradation of air quality has dragged the attention of

researchers from different disciplines. From the survey1, it is
evident that the indoor air quality is more polluted than that
of outdoors. Some of the indoor air pollutants may affect the
health of the occupants both physically and cognitively. As
an instance, deadly diseases like pneumonia, stroke,
ischaemic heart disease, and many more are caused due to
indoor air pollution. As a person can spend 90% of the time
indoors2, therefore, real-time monitoring of indoor air quality
should be the primary concern in order to maintain a healthy
environment. A survey by Martins and da Graca3 discussed
the different aspects of PM2.5 indoors and outdoors with their
sources and impacts. In our study Sharma et al.4, a sensor-
based Environment Monitoring Device (EMD) has been de-
veloped to measure the indoor air quality specifically PM2.5
and CO2. It has been observed that in an indoor environ-
ment i.e. classroom with a certain number of occupant, the
pollution level crosses the prescribed level of acceptance
after a certain period of time. Now, the question lies in de-
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signing appropriate mechanisms that would optimally locate
n number of EMDs for any given number of indoor locations.
Large numbers of EMDs are required to monitor the entire
building as each room has a different ambient as per the
activity going on in that room. Placing the EMD in each room
is not feasible as it would increase the cost linearly with ex-
tra overhead of maintenance. Besides, it also requires hu-
man intervention to maintain the infrastructure for the de-
vices. Moreover, if multiple buildings in a particular range is
to be monitored then, the problem of placing the limited num-
ber of EMDs would be the matter of concern for efficient
monitoring of pollution level indoors. On the other hand, for
an infinite number of available EMDs, one should also care-
fully analyze the optimal number of EMDs to be placed in
desired locations in order to minimize the deployment cost.
Considering such challenges, we design an optimization
model by exploiting the temporal and spatial aspects for not
only evaluating possible locations for limited EMDs indoors
but also for evaluation of the placement of an optimal num-
ber of EMDs into desired locations if they are plentiful. Our
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contribution lies in two phases: (i) For any limited number of
EMDs, we estimate the optimal locations where the EMDs
are to be placed such that the accuracy of air quality estima-
tion is high in unmonitored locations. (ii) If the number of
available EMDs is abundant then we estimate the optimal
number of EMDs to be placed to monitor the air quality of the
desired locations.

The rest of the paper is organized as follows: In Section
2, several state of the art sensor placement techniques have
been studied, proposed in the past literature. The proposed
work has been explained in Section 3, whereas Section 4
describes the experimentation part and Section 5 explains
the results and discussion. Finally, Section 6 concludes our
work and provides some future research directions.

2. Related work
Some existing work explains the placement of sensors in

different aspects. Castello et al.5, Rackes et al.6 use
Geostatistical Analysis and Monte Carlo theory followed by
variogram and kriging. The mean variance of the kriging is
calculated and stored as the optimization variable and the
minimum mean variance point provides the optimal location
for the sensor node. Shi et al.7 proposed a method for opti-
mal sensor location using the eigenvector sensitivity method.
Waeytens and Sadr8, Papadopoulou et al.9 proposed a strat-
egy for optimal placement of indoor air quality sensors using
computational fluid dynamics (CFD). Yoganathan et al.10 used
a clustering algorithm, information loss approach, and Pareto
principle to derive optimal placement strategy. None of the
above mentioned works have used both the temporal and
spatial features in an indoor air quality perspective. Unlike
the above-mentioned approaches, the current study proposes
a data-driven unsupervised approach for the placement of
an optimal number of EMDs indoors. The proposed tech-
nique includes temporal features like meteorological param-
eters and spatial features which include the area, volume,
air exchange rate, etc. of any room, for evaluation of Tempo-
ral and Spatial scores. The evaluated scores are then classi-
fied using clustering techniques to obtain the optimal place-
ment of EMDs.

3. Methodology
In this work, we have proposed a method to find the op-

timal rooms where the devices are to be placed to estimate

the pollutants’ concentration of an unmonitored room, given
the number of available EMDs. Here, our objective is to op-
timally place the EMD, i.e. to install the EMDs in some of the
rooms such that complete building can be covered. The prob-
lem can be stated as follows: Given, n different rooms with
some spatial and temporal features. If the number of avail-
able EMD is n, then how these EMDs are to be placed in
optimal rooms such that the real-time estimation of the pol-
lutants can be done with greater accuracy. Moreover, what
is the optimal number of EMDs required to monitor the rooms?

We gather the outside meteorological and AQI data for
Temporal Scoring and classroom specifications data for Spa-
tial Scoring. We have divided the data sets into two forms,
(a) Temporal: The parameters which are time-dependent and
vary with time and (b) Spatial: The parameters related to
space and do not vary with time.

3.1. Temporal Scoring of rooms using meteorological data :
For temporal scoring, the correlation between all the fea-

tures has been analyzed. Indoor, the pollutant CO2 and par-
ticle PM2.5 are relatively predominant. Hence, the temporal
score is the measure of the significance of these two pollut-
ants in the form of available features, which are Wind Speed
(WS), Wind Direction (WD), Temperature (T), and Relative
Humidity (RH) (Table 1).

Table 1. List of temporal and spatial features used for calculating
the temporal and spatial scores

Temporal features: Wind Speed, Wind Direction, CO2, PM2.5, Tem-
perature, Relative Humidity

Spatial features: Volume of the Room, Distance Vector, Floor, AER,
Age Group

3.1.1. Feature description:
Meteorological data consists of Temperature, Humidity,

Wind Speed, Wind Direction, etc. have great importance in
predicting air quality in a naturally ventilated environment.
The indoor environment is highly susceptible to outdoor
weather conditions, and it has a direct impact of wind direc-
tion as well as wind direction in a combination of outdoor air
quality. Moreover, the indoor parameters such as infiltration,
exfiltration, and airtightness of the room explicitly depends
upon these meteorological parameters. In order to estimate
the values of the pollutant, CO2 and particles PM2.5 inside
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each room, regression models are applied. The linear re-
gression model is used for its simplicity, but the result was
not significant because it cannot fit the data sets in a straight
line. Therefore, polynomial regression is used to avoid such
under-fitting situations. Suppose, Ci

j, Pi
j are the i-th coeffi-

cient of correlation with CO2 and PM2.5 respectively for j-th
room and the total number of components is k. So, the tem-
poral score is calculated as in eq. (1).
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3.2. Spatial scoring of rooms using spatial data:
The spatial scoring of rooms relies upon the features i.e.

Volume of the Room, Distance Vector, Floor, AER and Age
Group (Table 1). The description of each of the features are
given in Section 3.2.1.

3.2.1. Feature description:
The basic features of a room have been selected to get

the spatial score which includes Volume of the room: for de-
tection of the pollutants’ flow inside the room, Floor: to get
the variations to height, and Age group: as the exhalation
rate of occupants varies with age of a person (especially
students). Distance vector is the measure of the diversity of
the ambiance using the euclidean distance. If two rooms is
of similar properties but the distance between the rooms are
greater, this vector helps to get the correct cluster. The Air
Exchange Rate (AER) is the rate of air inflow and outflow,
which affects the air circulation of the room. It can be ob-
tained using CO2 concentration of the room with equilibrium
analysis. A significant relation has been discussed between
the window opening, the indoor temperature, and the result-
ing airflow rates, by La-zovic et al.11. The equilibrium analy-
sis has also been used by Paneras et al.12 which has been
shown in eq. (2) which shows the relation between the ob-
tained indoor CO2 concentration and the airflow. ahttp://en-
ergy-models.com/ventilation-infiltration-exfiltration

[CCO2
] = B0Vb1 (2)

where, [CCO2
] is the concentration of CO2 and, V is the air-

flow rate. B0 and b1 are the coefficients. These can be calcu-
lated using obtained concentration of indoor and outdoor CO2
concentrations. For spatial scoring, the features of the rooms
are taken into consideration such as volume of the room,

floor of the room, direction of the air flow and Air Exchange
Rate (AER). AER is used to measure the rate at which the
outdoor air replaces the indoor air within the room as de-
picted in eq. (3).

1 (C(0) – C0)
AER = — In —————— (3)

t (C(t) – C0)

where, C(0): initial CO2 concentration in the classroom. C(t):
CO2 concentration at time t and, t is the time interval be-
tween two consecutive data points.

An equation is formed using all the spatial features as
mentioned above in Table 1 for the calculation of the Spatial
Score. Suppose i

j is the values of the i-th spatial parameter
of j-th room. The Spatial Scoring of the j-th room can be
given as depicted in eq. (4).

k
j iSS d

k 1 i c
1

1    
 (4)

where k is the number of available spatial features except
distance vector. Here, i are the value of the i-th spatial fea-
ture and di is the distance vector from the origin and can be
calculated using the eq. (5).

dc = f (c, n, dc–1) (5)

where c: current room, n: neighbor.
Here, d0 = ds = 0 {s: source}
On calculating the TS and SS for each room, these points

are projected on a 2-d space. We apply clustering algorithm
to obtain the centroid of the clusters, which are then desig-
nated as the rooms where the EMD is to be placed.

3.3. Clustering:
After getting the values of the TS and SS as mentioned

in the previous section, we have used the clustering algo-
rithm. Here, clustering is to group the rooms in k number of
clusters according to the temporal and spatial features. Here,
k is the number of clusters to be formed, which again equals
to the number of available EMDs. In our study, clustering
techniques like K-Means, K-Medians, K-Medoids, and X-
Means have been used.

4. Experimentation
The experiments have been done by collecting the data

from different buildings of our institution. The reliability of the
collected data has been analyzed followed by the data pre-
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processing and feature extraction. The results have also been
analyzed and all the experimentation process has been dis-
cussed in the further subsections.

4.1. Data acquisition:
The data from 30 different rooms of our institute has been

collected from different buildings, as shown in Fig. 1. EMDs
are placed in all the rooms to collect the air quality data.
These rooms are of different buildings with different volume,
ventilation rates, etc. It is not feasible for us to place the
EMDs in each room as it is not cost-effective. We have placed
the EMDs in different rooms so that one box is placed in
front of the blackboard, and the second box is placed at the
back of the classroom, and the third one is placed outside
the classroom. Meteorological data are crawled from a com-
mercial website. Apart from this, we also collected the air
quality data from Air Quality Monitoring Stations at different
locations throughout Durgapur city.

4.2. Reliability of the collected data:
To ensure the reliability of the collected data, we have

used different calibration techniques. In our work, Sharma et
al.13, an idea of hard and soft calibration techniques, has
been depicted to calibrate the developed EMDs. We have
used zero air calibration techniques to set the zero reading
of the sensors by purging N2 gas inside a vacuum chamber
and placing the EMD inside the chamber. The external cali-
bration is also carried out using an Air Quality Monitoring

Station (AQMS) placed by the government. The calibrated
EMD is then used for further calibration of the EMDs.

5. Results and discussion
The data samples collected from the rooms, as depicted

in Table 1 then used for training and getting the coefficients.
Then these coefficients are used to compute the TS and SS.
After calculating the scores, these scores are plotted in a 2-
d space. The number of EMDs are then fed as input to the
clustering algorithm, and the classrooms are clustered ac-
cordingly. The obtained cluster heads or centroids are then
selected as the optimal classroom to place the EMD. The
results obtained by the TS and SS are plotted on a 2-d space.
The results have been presented in different aspects, such
as selecting the rooms of different buildings intentionally. It
results in the validation of the proposed algorithm as we se-
lect the rooms from different buildings, so the cluster heads
should be the rooms of different buildings. The results have
been presented in different ways as follows:

1. Rooms of different building: We have selected 4 differ-
ent buildings from our institution and selected different rooms
from each building. Suppose, the room is denoted by Ri

j i.e.
i-th room from j-th building and j  1, 2, ..., 15 and j-th 1, 2, 3,
4. Then after calculating the Temporal as well as Spatial
scores we have clustered the rooms and we have taken the
no. of EMDs same as the no. of buildings which is 4. The
EMDs and buildings are kept the same to validate the pro-

Fig. 1. Front view of the selected buildings of our institution with their locations on Map.
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posed algorithm and after clustering the TS and SS with K=4,
we obtained 4 rooms as centroids as depicted in Fig. 2. Here
the k-medoids provide the acceptable rooms as it provides
the centroids as the points among the existing. So, we pre-
sented the results obtained from k-medoids algorithm for clus-
tering. It has been observed that the obtained centroid rooms
Ri

j have the j as the super-set i.e. the cluster head is having
different j each. Hence, it can be said that our proposed al-
gorithm works well in the first set-up but, k-medoids provide
the centroids as a point which are among the existing.

2. Rooms of the same building: In this set-up, we have
selected different rooms of the same building. Here we have
selected 15 different rooms of the same building (b2). The
TS and SS of these rooms have been calculated, and clus-
tering is done. The number of EMDs varies between 2 to 4.e
obtained result has been shown in Fig. 3, which describes
the cluster heads for k=1, 2, 3, and 4. Here the estimation
result of the final number of EMDs has also been depicted,
which results in higher accuracy on increasing the number
of EMDs. Here, the results describe the clusters formed us-
ing a different number of EMDs, but for K=4, a single cluster
formed with only two rooms that are not feasible, so the
maximum number of EMDs should be three. In this building
only three floors are there so three EMDs can be placed on

three floors as depicted by the cluster heads which also veri-
fies our proposed methodology.

3. Same room with multiple trials: This test case mainly
deals with the validation of our proposed method as if the
same room is taken for the experiment, the optimal number
of EMD should be one. We have applied our proposed method
to get the optimal room with 1, 2, 3, and 4 EMDs. Here we
obtain a good estimation accuracy using a single EMD while
in above-mentioned cases, the estimation accuracy with a
single EMD is very low.

4. Comparing the intuitive and proposed room selection:
There may be a case where the intuitive selection of EMDs
with optimal rooms can be made. To prove the acceptability
of our work we have placed the EMD in an intuitively se-
lected room and estimate the AQI of other rooms. Then, we
have placed the same number of EMDs in the optimal rooms
selected by our proposed method. We have compared the
results of the estimation of air quality, and we observe that
the proposed method provides good accuracy, as depicted
in Fig. 4. We have intuitively selected a room in the center
point of the building, and the proposed method suggests a
different room. Here, the estimation is done using a machine
learning technique, and when the system uses the intuitively

Fig. 2. The clusters of different rooms of different buildings using all
the three algorithms.

Table 2. Comparison of estimation accuracy by deploying the EMDs in the rooms obtained by the proposed algorithm and the intuitively
selected rooms

Different building Same building
(All buildings) (Building-1)

K=1 K=2 K=3 K=4 K=1 K=2 K=3 K=4
Intuitive accuracy (%) 70 76 81 89 72 85 90 92
Proposed accuracy (%) 77 79 83 92 78 87 92 93

Fig. 3. The clusters formed when different rooms of the same build-
ings are taken with different number of EMDs available i.e.
K=1, 2, 3 and 4.
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selected room, the Root Mean Square Error (RMSE) is high
compared to the one suggested by the proposed method.
Moreover, Table 2 depicts the accuracy score with different
values of k (EMD).

5. Optimal number of EMD: In this case, the number of
EMDs which should be used to get the acceptable estima-
tion accuracy is estimated. The intuitively selected room and
room selected by the proposed method have estimated the
air quality of unmonitored rooms by placing and varying the
number of EMDs. By selecting 1, 2, 3, and 4 EMDs individu-
ally, we have calculated the accuracy using our proposed
method using clustering techniques such as k-means, k-
medians, and k-medoids. We then used x-means clustering
algorithm to get the optimal value of k which is the number of
EMDs in our scenario. We have to initialize the minimum
number of centroids by the minimum number of EMDs (Emin).
Then x-means is applied and we obtain the optimal possible
clusters using Emin. If the clustering is not possible then the
number of clusters will be Emin + x, with the least possible x.

6. Conclusion
In this work, we have proposed a method to place the

EMDs in indoors optimally. We have used temporal as well
as spatial features of rooms and calculated Temporal and
Spatial scores considering the temporal and spatial features,
respectively. These scores are then used in 2-d space, and
some clustering techniques are used, such as K-means, K-
medians, and K-Medoids, to cluster the rooms based on the

temporal and spatial scores. Finally, the rooms which are
the centroids of the clusters are marked as the optimal room.
The estimation of the AQI of rooms is carried out, and we
have achieved a good accuracy of 93% with optimal num-
bers of EMDs.
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