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According to Turing’s hypothesis, the spatially heterogeneous pattern emerges from a reaction-diffusion system due to the
diffusion driven instability caused by the difference in diffusivities of the activator and inhibitor like reactant species. How-
ever, reaction-diffusion systems consisting of ionic reactants often lead to interesting spatiotemporal structures under the in-
fluence of constant external electric or magnetic field even in absence of diffusion driven instability. Unfortunately, only stripe
like pattern arises in presence of such kind of external electric field. Herein, we explored the effect of circularly polarized
electric field on a spatially extended model reaction-diffusion system (Gray-Scott model), and showed that under the influ-
ence of such kind of periodic perturbation, a diverse range of spatial patterns can be obtained both in presence and absence
of diffusion driven instability. Interestingly, the long time limit spatiotemporal structures emerged under the presence of circu-
larly polarized electric field are found to be evolving with time due to the intrinsic time dependent nature of the external per-
turbation. Thus, our numerical study provides a way to obtain diverse spatiotemporal patterns by circumventing the stringent
condition of diffusion-driven instability, which can be easily verified by performing experiments with ionic reaction-diffusion

system.
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Introduction

Spatiotemporal pattern formation in chemical and biologi-
cal systems is an intriguing and exciting phenomena observed
in nature’-2. Around the middle of the last century, mathema-
tician Alan Turing first proposed the chemical theory of mor-
phogenesis for spontaneous symmetry breaking during em-
bryogenesis. He suggested that during early development
of an embryo, appropriate interplay between reactions and
diffusion of activator and inhibitor kind of chemical species
caused the spontaneous symmetry breaking, and ultimately
lead to stationary spatial structures. Importantly, these struc-
tures arise only when diffusion makes a homogeneous stable
steady state into spatially inhomogeneous one. This phe-
nomena was termed as diffusion driven instability3. Attain-
ment of such a situation requires a significant difference be-
tween the diffusivities of the activator and inhibitor chemical
species, which was difficult to achieve under laboratory con-
dition#®. Thus, it took about 40 years to prove Turing’s idea
about spatial pattern formation using a chemical system®.

The experimental verification of Turing’s idea renewed the
interest among the researchers to explore other reaction-
diffusion systems both from experimental and theoretical
standpoint to observe Turing kind of spatial patterns®-8. None-
theless, creating a condition of wider difference of diffusivity
between the inhibitor and activator, still remained to be a big
challenge to overcome experimentally.

How to circumvent such a challenging experimental sce-
nario? To answer this important question, efforts were made
to overcome the stringent condition of diffusion driven insta-
bility by employing external perturbation in the form of mag-
netic field® 10, electric field"'=13, light (for photosensitive re-
actions) 415 or by introducing relevant perturbations'6-2" in
the corresponding reaction-diffusion systems. It has been
found experimentally that most of the pattern forming reac-
tion-diffusion systems are ionic in nature, and externally ap-
plied electric field can generate chemical waves in many such
chemical systems22-28_ n literature, it is reported that con-
stant electric field perturbation can deform the existing Tur-
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ing patterns obtained due to diffusion driven instability2’~3C,
while the condition of wider difference of diffusivity of inhibi-
tor and activator can be removed by employing external elec-
tric field under certain condition'2":31. One disadvantage of
employing such externally directed electric field is that the
diversity in the range of spatiotemporal structure is lost. This
is due to the fact that the directional field aligns the patterns
in a specific direction after a while, and we mostly get stripe
patterns of different form'"-32. The obvious challenge is to
obtain a more diverse range of spatial patterns even in pres-
ence of external perturbation, while subsiding the stringent
condition on diffusivities of the reactants involved in different
reaction-diffusion system.

In this article, we have investigated the effect of circularly
polarized external electric field on a Gray-Scott like chemi-
cal reaction-diffusion system. In this regard, it is worth men-
tioning that Gray-Scott model system is basically an activa-
tion-substrate depletion3 model system capable of mani-
festing different kind of spatial patterns under different para-
metric regime34, and there are chemical systems (like ferro-
cyanide-iodate-sulphite (FIS) reaction-diffusion system) that
has been studied extensively experimentally and theoreti-
cally in terms of this model system®234-36_ Qur endeavor
here is to explore whether a similar range of diverse spa-
tiotemporal patterns can be observed in absence of diffusion
driven instability by simply employing circularly polarized
external electric field or not. At the same time, we investi-
gated the effect of the circularly electric field in presence of
diffusion driven instability for the same system. Our numeri-
cal study demonstrates that in presence of a circularly polar-
ized external electric field the Gray-Scott model system will
be capable of demonstrating wide range of diverse spatiotem-
poral patterns in presence as well as in absence of diffusion
driven instability.

The Gray-Scott model
Here we have considered an autocatalytic reaction of two
reactants U and V that follows Gray-Scott model kinetics.
U+2v—-3Vv
VP
The reactions are occurring in the above mentioned way in
an open flow reactor, where U is constantly fed into the reac-

tor, and the inert product is removed from the system. It is
evident that the first reaction is the autocatalytic step, in which

810

the presence of V itself stimulates its own production. The
second reaction is just a decay of V into product. That's why
this reaction is called activation-substrate depletion kind of
system, where V' is playing role of activator and U is sub-
strate. In literature, it is reported that the FIS-system men-
tioned earlier follows Gray-Scott kinetics3®. This is an ionic
reaction. Thus, if the reaction happens in presence of exter-
nally applied circularly polarized electric field, because of the
ionic nature of the reactants, the spatiotemporal evolution of
the reactants will be altered. To analyze the effect of such
kind of electric field on the spatially extended Gray-Scott
model, the corresponding reaction-diffusion equations in pres-
ence of externally applied (from two mutually perpendicular
directions) circularly polarized electric field can be repre-
sented as;

ou ou ou
E:f(u"/)+DuV2U+ZuDu(EX@_X+E‘V§j (1)
v <2 a_ v o
—=g(uv)+D,N° +z,D,E,—+E, —- 2
Tt g(uyv) +D, v vg x yﬂ}/g (2)

Here f(u,v) = -uv? + F(1-u) and g(u,v) = uv2 - (F + K)v are
the non-dimensionalized reaction kinetics of U and V, where
u(x,yt) and v(x,yt) are the two concentration variables of sub-
strate (U) and activator (V) in the two dimensional space
(x,y) considered. F and K are the dimensionless feed rate
and rate constant, respectively. Rescaled diffusion coefficients
of Uand Vare represented by D, and D,. E, and £, are the
two applied circularly polarized electric field along x and y
direction, where E, = E) cos (wt) and E, = E) cos (ot + 37“).
EYand EE are the rescaled electric field strength of the cir-
cularly polarized electric field along x and y direction. Along
x and y direction, the applied electric field has a phase differ-
ence of 37“ , S0 basically we are applying a circularly polar-
ized electric field to the spatially extended Gray-Scott model.
Charges of the reactants U and V are z, and z,,, respectively.
Here we adopted the value of z,, and z, from the FIS reaction
system, where HSOJ3 is the substrate (U) and H' ion acts as
catalyst (V).

First, we analyze the kinetic terms of egs. (1) and (2)
without considering diffusion and electric field related terms.
Under long time limit, this system will give one or more than
one steady states in different parametric regime. In every
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parametric regime, the system shows the trivial steady state
ud = 1.0 and v = 0.0, which is a linearly stable steady
state. For other combinations of F and K, if F > 4(F + K)?
holds, then the system will have another two steady states:
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The trivial steady state (u%, V), )is called ‘red state’ and (u,
v1)is called ‘blue state’, which may be stable or unstable®.
In literature, attempts are made to obtain Turing kind of pat-
terns either by perturbing the stable trivial steady state, or in
the parametric regime where non-trivial ‘blue state’ exists.
Pearson showed a wide variety of pattern can be obtained in
Gray-Scott model in presence of diffusion driven instability,
mostly by perturbing the trivial steady state by a strong local
perturbation. In this report, we followed a numerical proce-
dure similar to Pearson, while numerically simulating egs.
(1) and (2) in presence of circularly polarized external elec-
tric field along two mutually perpendicular directions in ab-
sence and presence of diffusion driven instability.

1
2 1 X
Vw‘E ;

F i
K

=2 -l- cl- O

Method

For numerical simulation of eq. (1) and eq. (2), we have
employed explicit Euler method of integration under periodic
boundary condition. The reaction-diffusion equations are
discretized with a time step of 0.5 and with a spatial step
size of 0.0098 along both x and y direction. The spatial mesh
size for the simulation is 256x256 (unless otherwise men-
tioned). In the parametric space, where the sole steady state
is the trivial steady state (uJ = 1.0, v3; = 0.0), we used the
method followed by Pearson to perturb the system at the
start of the simulation. Initially the whole system is placed on
the trivial steady state (u9 = 1.0, v = 0.0) except the cen-

ter (20x20 mesh points) of the box. The center of the box is
placed at a value of u= 0.5, v=0.25. Now in order to break
the square symmetry the initial values at the center, each
grid points are perturbed with +1% random noise. For our
numerical integration we have employed same methods for
the parametric space, where the sole steady state is the trivial
one. For other cases, where along with the trivial steady state
another steady state usually coined as ‘blue state’ exits, we
initially placed the entire grid with random noise around the
steady state value of ‘blue state’, and performed our numeri-
cal simulation under the influence of circularly polarized ex-
ternal electric field in presence and absence of diffusion driven
instability.

Results and discussion

We began our analysis by numerically integrating eq. (1)
and eq. (2) by considering the presence of diffusion driven
instability. Our intention here is to unravel how the applied
circularly polarized external electric field is going to affect
the spatiotemporal patterns observed earlier by Pearson
under different parametric domain of Gray-Scott model.

Transformation of stationary patterns into time depen-
dent spatial structures in presence of diffusion driven
instability

For the parameter value F = 0.038, K = 0.0585, along
with the trivial steady state, there exists another steady state
Ugs = 0.429, vy = 0.224, which is stable in absence of diffu-
sion. Now, if the diffusivity of U is higher compared to the
diffusivity of V (D, = 2x107°, D, =107, the stable steady
state becomes unstable in presence of diffusion and ultimately
leads to spot pattern (Fig.1(i)). Upon application of a circu-
larly polarized electric field EQ = E}g =10.0, this spot pattern
gets transformed into complex labyrinth type spatial struc-
ture (Fig. 1(ii)-(iv)). For the numerical simulation we took
= 0.0015. Since the applied electric field is circularly polar-
ized, the whole spatial structure seems to evolve with time
(Vid1.mov, Supplementary file).

We get the similar observation (SFig. S1, Supplemen-
tary file) for another parametric space (F = 0.03, K= 0.05).
Here also the spot pattern gets transformed into complex
labyrinth type structure, because of the interplay between
diffusion driven instability and circularly polarized electric field
induced instability.

Interestingly, in the regime, where only the trivial steady
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Fig. 1. Transformation of the spatiotemporal structure (in presence of diffusion driven instability) in presence of a circularly polarized electric field
by perturbing the “blue state”. (i) The reaction-diffusion equations are simulated for 50000 time steps in absence of electric field. (ii)-(iv)
Results are obtained in presence of electric field at different time points: (i) 10000 time steps, (i) 30000 time steps and (iv) 50000 time

steps.

state exists for the parameter values of F = 0.035, K=0.065,
one usually obtains a multiplicative spot pattern (Vid2a.mov,
Supplementary file) that evolves slowly with time to produce
a spatiotemporal structure as shown in Fig. 2a(i)-(iv). For
numerical integration we use the same procedure as used
by Pearson. When a bidirectional circularly polarized exter-
nal electric field having amplitude of E) = E9 = 25.0, (w =
0.0015) is applied to the same system, the spots started col-
liding with each other Fig. 2b(i)-(iii) and gave rise to a mix-
ture of spots and stripes (Vid2b.mov, Supplementary file),
and eventually produced a mixed spot-stripe kind of spa-
tiotemporally evolving structure Fig. 2b(iv). The time depen-
dent nature of the external forcing made the spatial struc-
tures also time dependent (as shown in Fig. 2b).

()
(i}

{h)
(i) (il

Circularly polarized electric field induces spiral pattern
formation

The previous section demonstrates that circularly polar-
ized external electric field can influence the spatial patterns
already observed due to diffusion driven instability. Intrigu-
ingly, we explored another set of parameter values (F = 0.005,
K=0.025), where even in presence of difference in diffusivities
between U and V (D, = 2x107°, D, = 10~°), the numerical
simulation produces a homogeneous spatial solution, i.e. no
spatiotemporal pattern is obtained. This implies that diffu-
sion driven instability is not enough to create an inhomoge-
neous spatial solution in this instance. To make the system
unstable enough, we apply a circularly polarized electric field
having amplitude £ = E9=5.0 and & = 0.0015. Upon ap-

Fig. 2. Transformation of the spatiotemporal structure (in presence of diffusion driven instability) in presence of a circularly polarized electric field
by perturbing the trivial steady state. (a) Evolution of spot pattern only because of diffusion driven instability for the parameter value F =
0.035, K =0.065. (b) Effect of electric field on this parameter value. The reaction diffusion equations are simulated for 50000 time steps
for both the cases and at different time points, it is shown in the figure as follow: (i) t = 0 time step, (ii) t = 10000 time steps, (iii) t = 30000

time steps and (iv) t = 50000 time steps.
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plication of such a circularly polarized external electric field,
the system evolves toward a heterogeneous spatial regime
(Fig. 3). Here we obtain an immature spiral pattern, where
the spiral produced transiently collides with each other and
annihilates each other. As mentioned in the previous sec-
tion, here too the stationary spatial structures will not form
due to the time dependent nature of the external forcing.

We further investigate whether the initial perturbation
employed to initiate the numerical integration has any role in
determining the finally obtained spatiotemporal structures or
not? For that we give initial perturbation to the system in two
different ways while initiating the numerical simulation. First,
we initially perturb the whole grid with £1% random noise
around the steady state of this parameter value (ug, = 0.235,
Vss = 0.127). To look at the evolution of the perturbation in a
better way, we take a larger grid (1024x1024) size. In this
scenario, we have observed the evolution of immature spi-
rals on the whole grid (shown in Fig. 3a). Second, we have
employed almost similar procedure as mentioned by Pearson
for simulating the trivial steady state. Since in this parameter
value (F = 0.005, K = 0.025) along with the trivial one (ugs =
1.0, vg = 0.0), another steady state also exists, we initially
place the whole box on the steady state (ug, = 0.235, v, =
0.127) except the center of the box (80x80). In the middle of
the box we initially perturb the steady state with £1% ran-
dom noise. We found that the evolution of the initial pertur-
bation is different compared to the first case discussed ear-
lier. Here the heterogeneous solution emerges from the four
corners along with the center of the box.

From the center of the box and from the corners, ring like
structures are appearing (Fig. 3b(i)). Eventally, with time spi-
ral structures are emerging from the ring like structures (Fig.
3b(ii)). Fascinatingly, the rings coming from the center col-
lide with the rings evolving from the corners, and the whole
grid becomes full of immature spirals, where the spiral struc-
tures collide with its neighboring spirals (Fig. 3b(iii)). This
clearly depicts that the initial perturbation is not dictating the
ultimate spatial structures. Initial perturbation only can change
the initial evolution of the heterogeneous solutions, but un-
der long time limit the heterogeneous spatial structures be-
come independent of the initial perturbation. To show the
spatio-temporal evolution of the patterns as discussed in Fig.
3, we have provided additional video (Supplementary file,

e poa e S0y o - L g i

Fig. 3. Circularly polarized electric field induced spatial spiral patterns
(difference in diffusivities is present) and the effect of initial
perturbation on the emergent spiral patterns. The patterns
shown in (i)-(iii) for both (a) and (b) are at (i) t = 5000 time
steps, (i) t= 15000 time steps and (iii) { = 25000 time steps. In
(a) and (b), the initial perturbation employed to initiate the nu-
merical simulation is different, but other conditions remain

same.

Vid3a.mov and Vid3b.mov) files produced from the simula-
tions to make the point clearer.

Circularly polarized electric field induced spatial pat-
tern formation in absence of diffusion driven instabi-
lity

In previous sections, we have shown interplay between
diffusion-driven instability and circularly polarized electric field
induced instability can give birth to wide variety of time de-
pendent spatial structures. In literature, it has been recently
shown that stationary bi-directional static electric field can
induce instability even when the diffusivity ratio of the reac-
tantsisone (D, =D, = 2x10°), and stable stripe pattern can
be obtained in various parametric space for Gray-Scott model
system32. The stripe patterns were obtained because of the
uni-directionality of the external forcing. Can we get wider
variety of spatial structures in absence of diffusion driven
instability just by applying external forcing? To answer this
question, we employ the circularly polarized electric field on
the spatially extended Gray-Scott model, by assuming that
both the reactants have similar diffusivities (D, = D, = 2x
10-%). We have performed numerical simulation for the pa-
rameter value F = 0.038, K = 0.0585 for 50000 time steps in
presence of circularly polarized electric field (EQ = E}Q =10.0)
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on a spatial grid of size 256x256. Initially, £1% random noise
is being introduced to the whole system around the steady
state (ugg = 0.429, vy = 0.224). Results of the numerical
simulation show that at the very beginning stripe like struc-
ture evolves, but later on, due to the periodic nature of the
external forcing the stripe patterns break into a unique kind
of spatial pattern (‘half-moon’ or ‘elongated spot’ shaped struc-
tures). Since the temporal dynamics of external electric field
varies periodically in both x and y direction, the whole pat-
tern rotates and during the rotation these elongated spots
are coming close to each other and colliding with each other
(Vid4a.mov, Supplementary file). In Fig. 4a(i)-(iii) the above
mentioned patterns are shown at three different time points.

In a similar manner, upon application of a bi-directional
circularly polarized external electric field (9 = E9 = 25.0,
= 0.0015) on another parameter space (F = 0.063, K =
0.06249), where ‘blue state’ exists along with the trivial one,
a heterogeneous spatiotemporal solution emerges (Fig. 4b(i)-
(iii)) in absence of diffusion driven instability (here D, = D, =
2x1079),

Here also at the very beginning only stripe patterns evolve,
but with time these stripes break into spots. Due to the circu-
larly polarized nature of the electric field the spots rotate too
(Vid4b.mov, Supplementary file). Fig. 4b depicts how with
time the spots are changing their positions continuously.

At this point, we further examine what happens when we
excite the Gray-Scott model system at the parametric (F =
0.005, K = 0.025) regime, where we got spiral kind of spa-
tiotemporal pattern earlier (Fig. 3). Here we added the extra
constraint that there is no difference in the diffusivities of the
reactant species involved. We observed that even when the
activator and substrate have the same diffusivities (D, = D,
= 2x1079), we can get spiral pattern (Fig. 4(b)). For this we
have to increase the amplitude of the circularly polarized elec-
tric fields (E9 = £} = 10.0) than the previous case (Fig. 3).
Fig. 4(b) evidently shows that only applying circularly polar-
ized external electric field (€2 = £9=10.0, & =0.0015) can
induce instability into the system and lead to spiral spatial
structures in complete absence of diffusion driven instability.

Like constant bi-directional electric field, circularly polar-
ized electric field can also induce instability in a Gray-Scott
like system, where the sole steady state is the trivial one. In
the parameter space F = 0.03, K = 0.06, the sole steady is
Ugs = 1.0, vgs = 0.0. For numerical simulation on this regime,
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Fig. 4. Circularly polarized electric field induced pattern formation (in
absence of diffusion driven instability) in Gray-Scott model even
in absence of diffusion driven instability (D, = D, = 2x1079) at
different values of F and K. (a) Patterns formed in presence of
the circularly polarized electric field (E9 = £0= 10.0, ® =
0.0015) for the parameter value F = 0.038, K = 0.0585. (b)
Spot pattern formation for the parameter value F = 0.063, K =
0.06249 in presence of bi-directional ac electric field. The
amplitude of ac electric filed is £9 = E)=10.0 and frequency,
® =0.0015. (c) Spiral pattern formed for the parameter value
F=0.005, K =0.025, where the strength of the time depen-
dent electric field is £0 = £0 = 10.0 and the frequency, o =
0.0015 . (d) Patterns formed in the parameter space F=0.03,
K = 0.06 under the influence of a circularly polarized electric
field (EQ = E) = 25.0, w = 0.0015). For all the parameter sets
described here the reaction-diffusion equations are simulated
for 50000 time steps. Patterns shown in (i)-(iii) for (a)-(d) are
at different time points: (i) t = 10000 time steps, (ii) t = 30000
time steps and (iii) £ = 50000 time steps.

we again employ Pearson’s strategy described earlier. Re-
sults of the numerical simulations show the emergence of
curved stripe type pattern at the beginning, and the patterns
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start rotating with time. During rotation, one stripe collide with
its neighbor and gives birth to a mixture of spots and stripe
(Fig. 4d(i)-(iii)). The observations made in this section sug-
gest that even with equal diffusivity of the reactants, circu-
larly polarized electric field can give birth to wide variety of
spatial structures. This is in stark contrast to the scenario of
the spatial structures obtained under constant bi-directional
electric field, which only produces stripe patterns''%2. The
reason of showing wide variety of pattern in this situation lies
on the periodic nature of applied electric field and the phase
difference of the two circularly polarized electric field along x
and y directions, respectively. Due to the phase difference,
with time the amplitude of external forcing in both directions
get modulated in different extent. Thus, the stripe like pat-
terns usually obtained for constant bi-directional electric field
give rise to other kinds of patterns under periodic variation of
the applied circularly polarized fields.

Conclusion

In early 1950’s, Turing proposed an ingenious idea that
in a reaction-diffusion system, the difference in diffusivities
of the two different kind of reactant species can create an
instability that in turn gives rise to spatiotemporal patterning
in chemical and biological systems?. Experimentally, it is stil
a challenge to generate a Turing like system due to such
stringent requirement of differences in diffusion coefficient of
reactant species. In literature, it had been demonstrated that
the diffusion driven instability can be supplemented by ap-
plying external electric field in reaction-diffusion systems in-
volving ions. Application of constant electric field along one
direction (or in both directions) drives the ions to align along
a particular way, which always produces the stripe like pat-
tern even in absence of diffusion driven instability. This has
been well explored in literature from both theoretical and
experimental standpoints'":2728:32 Unfortunately, the spa-
tial patterns formed under such cases are only limited to stripe
like patterns. How to manufacture different types of spatial
patterns by applying external forcing especially in absence
of diffusion driven instability?

In this article, we addressed this question and showed
that by employing circularly polarized external electric field
in a Gray-Scott like reaction-diffusion system, one can ob-
tain dynamically highly diverse spatiotemporal patterns. Im-
portantly, we demonstrated that by applying a circularly po-

larized electric field, a wide variety of spatial structures can
be obtained even when the two reactants have equal
diffusivities (Fig. 4). Interestingly, the spatiotemporal struc-
tures attained after long time limit were still evolving with
time (Vid4a-d.mov, Supplementary files) due to the time de-
pendent nature of the applied circularly polarized electric fields
along two perpendicular directions. The point to be noted
here is that the spatiotemporal instability in this instance is
mainly caused by the disparity in the phase difference of the
circularly polarized electric fields along two mutually perpen-
dicular directions. Not only that, this phase difference gets
also reflected in the nature of revolutions (Vid4a-d.mov,
Supplementary files) we observed in the long time limit spa-
tiotemporal patterns as well. Due to this, the patterns formed
are not getting aligned into a specified direction. As a re-
sults, the stripe patterns at the beginning break down into
other kinds of mixed spatial structures with progression of
time.

Additionally, we showed that by applying circularly polar-
ized electric field, one can transform the stationary struc-
tures into time dependent one, even in presence of diffusion
driven instability (Figs. 1-3). The applied circularly polarized
electric field seemed to transform one type of spot pattern
(originated from ‘blue state’) into complex labyrinth type of
spatial structure (Fig. 1), while other type of spot pattern (origi-
nated from ‘red state’) is getting transformed into a mixture
of spot and stripe (Fig. 2). This variety in the spatial struc-
tures obtained can be attributed to the diverse dynamical
nature of the Gray-Scott model system, which shows vari-
ous dynamical features under a range of parametric condi-
tions of F and K333839_ Duye to such dynamical diversity of
the Gray-Scott system, for one set of parameter value the
spot patterns get transformed into labyrinth, and for another
set it is getting converted into mixture of spots and stripe.
Our numerical simulations further revealed that where diffu-
sion is not able to create enough instability to observe pat-
tern formation, introduction of circularly polarized electric field
(with relatively low amplitude) is enough to create spatially
heterogeneous solution. In this context, we showed that the
initial perturbation (employed to initiate the simulation) only
can change the transient evolution of spatial heterogeneous
solution seen at the beginning, but ultimately the initial per-
turbation will not have any role on the final form of the spa-
tiotemporal patterns (Fig. 3).
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In conclusion, our simulation studies unravel that circu-
larly polarized electric field can produce a wide variety of
spatial structures both in presence and absence of diffusion
driven instability in a spatially extended Gray-Scott like sys-
tem constituted with ionic reactants. Since, there are more
than one kind of experimental systems available, which fol-
low the Gray-Scott model system, one can verify our predic-
tions experimentally. We strongly believe that application of
such kind of circularly polarized electric field can provide a
unique way out to circumvent the stringent Turing conditions,
and at the same time will allow to realize complex spatiotem-
poral patterns emerging from ionic reaction-diffusion systems.
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