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A method of construction of graphs for extended graphene sheets of the formula C6n2H6n, n = 1, 2, 3,..., maintaining six-fold
symmetry has been developed. It has been shown that their adjacency matrices, which are of size 6n2×6n2, can be reduced
to n2×n2 matrices by exploring rotational symmetry and the reduced matrix can be easily written down as the adjacency ma-
trix of a directed graph with n2 vertices (called ‘reduced graph’ in this article). A scheme for drawing the reduced graph is
devised and from this the graph eigenvalues can be easily determined. It has been shown that the HOMO-LUMO energy gap
of the -MOs decreases as n increases, and an almost gapless graphene sheet (E = ELUMO – EHOMO = 4.5×10–10 , where
 = resonance integral between two adjacent sp2-C atoms) begins to form at 6×202 carbon atoms arranged in a 2-dimen-
sional hexagonal lattice.
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1. Introduction
Graphenes are electronically important materials of the

present age. Single-layer hexagonal carbon lattices are called
nanographenes (NGs) and theoretical study of such materi-
als is of current interest1–3. Although all electron Green’s func-
tion calculations together with the density functional theory
are theoretically more rigorous for such materials4–8, simple
Hückel level calculations considering only the -electrons of
the sp2-hybridized carbon atoms of NGs with finite number
of carbon atoms have recently been shown9 to yield reliable
results comparable to the sophisticated methods. On the other
hand, molecular (hydrogen suppressed) graphs of poly-
nuclear aromatic hydrocarbons (PAH) represent the network
of -orbitals and the graph eigenvalues, i.e. the eigenvalues
of the adjacency matrices are known to be equivalent to the
-MO energies with the scaling  = 0 (Coulomb integral)
and = 1 (Resonance integral)10–12. In the present paper
graphene sheets with carbon atom skeleton represented by
the PAH of formula C6n2H6n, n = 1, 2, 3,... has been studied
by utilizing 6-fold rotational symmetry and their graph eigen-
values (-MO energies) have been calculated graph theo-
retically in order to estimate the practicable minimum num-
ber of carbon atoms needed for the NG sheet to achieve
zero band gap without overlap of conduction and valence
bands.

2 . Method for  construct ion of  graphs  for ex tended
graphene sheets maintaining 6-fold rotational symme-
try

Two methods have been developed for this purpose as
discussed below.

Method A:
Step 1: Start with a central hexagon and draw three dot-

ted lines bisecting the three pairs of opposite edges.
Step 2: Along each line place two hexagons on opposite

sides of the central hexagon. This will complete C24; all hexa-
gons are fused and no extra vertex is needed (Fig. 1(a)).

Step 3: Along the dotted lines fuse one hexagon on each
side. This will give three linear pentacenes intersecting at
the central hexagon (Fig. 1(b)).

Step 4: Place one vertex at the centre of each gap be-
tween the linear polyacenes and join it to the nearest verti-
ces to completely fuse the corresponding hexagons. This
gives C54 (Fig. 1(c)).

Step 5: Again add one hexagon on opposite sides of each
dotted line so that there are three linear heptacenes inter-
secting at the central hexagon (Fig. 1(d)).

Step 6: Each gap generated between the linear
polyacenes now requires three vertices to be joined to the
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nearest vertices for complete fusion of rings. This completes
the construction of C96 (Fig. 1(e)).

In this way by progressively increasing the number of
intersecting linear polyacenes along the dotted lines and fill-
ing up the gaps by 5, 7,… vertices and completing the fusion
processes, graphs for C150, C216,... can be drawn.

construction of a graphene sheet with 6-fold symmetry hav-
ing 6n2 number of carbon atoms and 3n2 – 3n + 1 number of
fused rings.

This procedure is fairly simple and is illustrated in Fig. 2
for the C150 graphene sheet. Here 150 = 6×52, the central
polyacene has 9 rings and the successive layers (above and
below) have 8, 7, 6 and 5 rings respectively.

Method B:
Step 1: Start with a linear polyacene containing (2n – 1)

fused rings.
Step 2: Fuse (2n – 2) rings symmetrically above and be-

low of the central polyacene.
Step 3: Fuse (2n – 3) rings symmetrically above and be-

low the system obtained above.
Step 4: In this way proceed up to fusion of (2n – n) = n

rings symmetrically above and below. This will complete the

Fig. 1. Illustration of Method A for construction of graphene sheets
maintaining 6-fold rotational symmetry.

Fig. 2. Construction of C150 graphene sheet by Method B.

3. Reduction of the adjacency matrix using 6-fold rota-
tional symmetry

The algorithm for utilizing r-fold rotational symmetry (r 
2) to factorize the characteristic polynomial of a graph was
developed by Davidson and independently by Shen13,14. Ac-
cording to this algorithm, the vertices of a graph with 6-fold
rotational symmetry can be grouped in orbits such that any
vertex in a given orbit can be transformed into another of the
same orbit by a 6-fold rotation and no two vertices belonging
to different orbits are rotationally equivalent. If the graph has
N vertices, one can label the vertices in a given orbit with
increment of N/6; the procedure is as follows:

For the first orbit the vertex labels are 1, (1 + N/6), (1 +
2N/6),....., (1 + 5N/6); for the second orbit the vertex labels
are 2, (2 + N/6), (2 + 2N/6),....., (2 + 5N/6) and so on.

The labeling scheme is illustrated for the C24 and C54
systems in Fig. 3.
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Under such a labeling scheme the  adjacency matrix of
the graph is circulantly partitioned as

Circulantly partitioned matrices resulting from 6-fold rotational
symmetry can be transformed13,14 into block diagonal matri-
ces for which each block matrix is given by

j
r

5
r j

1 r 1
0

,
 


 B A  j = 0 to 5,

where e i
2 i
6 , 1


    (1)

4. Construction of the reduced graph and general form
of the blocks after reduction

The blocks obtained according to eq. (1) are Hermitian
matrices of size n2×n2 for a graphene sheet of 6n2 vertices.
Out of the six blocks, there are two pairs of identical blocks
giving two sets of degenerate eigenvalues. This results from
the following properties of (sixth roots of unity):

m + (m)* = 2, 1, –1, –2, –1, 1 for m = 0, 1, 2, 3, 4 and 5
respectively.

Any such block can be regarded as the adjacency matrix of
a ‘reduced graph’ which is constructed by the following steps;
for simplification m has been written as a for all the permit-
ted value of m:

Step 1: Start with a linear chain of n2 vertices, label the
vertices successively as 1, 2, 3,....,n2 and attach a self-loop
of weight (a + a*) to vertex 1.

Step 2: Divide the chain into segments by dotted vertical
lines placed after the vertices labeled  12, 22, 32,....,n2.

Step 3: Connect the last vertex (of label n2) to the vertex
of label n2 – 2(n – 1) by means of two directed edges of
weight a and a*.

Step 4: By subtracting 2 from the labels of the pairs of
vertices connected by directed edges in the previous step,
one gets the labels of those pairs of vertices which are now
to be connected similarly by directed edges of weight a and
a*. For the segment ending with vertex label p2, there will be
p – 1 such connections.

Step 5: In this way all the segments are to be constructed.
The procedure is illustrated below for C96 (Fig. 4).
Steps 1 and 2: For C96, 6n2 = 96, i.e. n = 4. Thus a chain

Fig. 3. Vertex labeling of C24 and C54 graphenes using 6-fold sym-
metry.

An illustration is shown below for the C24 system.

In this case

A1 = ,  A2 = and so on.
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of 16 vertices is to be constructed, a self-loop of weight (a +
a*) is to be attached to the first vertex of the chain and 4
segments are to be generated by dotted vertical lines after
the vertices labeled 1, 4, 9 and 16 (Fig. 4a).

Steps 3 and 4: For the segment ending with vertex label
16, number of pairs of connections = n – 1 = 3.

The vertex pairs to be connected are (16, 10), (14, 8) and
(12, 6) (Fig. 4b).

Step 5: For the segment ending with vertex label 9, num-
ber of pairs of connections = n –1 = 2 . The vertex pairs to be
connected are (9, 5) and (7, 3). For the segment ending with
vertex label 4, number of pairs of connections = n –1 = 1.
The only vertex pair to be connected is (4, 2). We thus get
the complete reduced graph for C96 (Fig. 4c).

Fig. 4. Construction of the reduced graph of C96.

The adjacency matrix of this reduced graph for C96 is:

It is to be noted that this matrix also contains those for
the reduced graphs of C6, C24 and C54 as indicated by dot-
ted blocks within the matrix.
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5. Characteristic polynomials and eigenvalues of the
graphene graphs

The characteristic polynomials of the reduced graphs in
terms of b (= a + a*) for the systems C6, C24, C54 and C96
found from their corresponding adjacency matrices (A) are
given in Table 1. These polynomials were constructed by the
usual Laplacian expansion of the determinant |xI – A| where

2 are the negatives of those corresponding to b = –2 and
similarly the eigenvalues corresponding to b = 1 and –1 are
equal in magnitude but opposite in sign. This is consistent
with the fact that the graphenes are even alternant -sys-
tems and their Hückel molecular orbital eigenvalues occur in
±pairs15.

6. Variation of HOMO-LUMO energy gap with size of the
graphene sheet

The graph eigenvalues, which are also the -MO ener-
gies of the graphenes in  unit, are given in Table 2. When
the energy of the highest occupied and lowest unoccupied
molecular orbitals (HOMO and LUMO) are plotted against
the number of carbon atoms (m) of the C6n2 systems (n = 1,
2, 3, 4), the energy gap decreases asymptotically (Fig. 5);
the two curves fit into the bi-exponential form

ELUMO = 0.8177e–0.0872m + 0.5440e–0.0090m = –EHOMO

with a correlation, r2 = 1.0. The two curves practically touch
each other (E = ELUMO – EHOMO = 4.5×10–10 ) at m =
6×202 = 2400 carbon atoms. Thus a graphene sheet with
moderately large number of rings is expected to behave like
a material between semiconductors (finite non-zero band gap)
and metals (with overlapping valence and conduction bands).

Table 1. Characteristic polynomials of the reduced graphs for
graphene systems up to C96

System Characteristics polynomial of the reduced graph
C6 : x – b
C24 : x4 – bx3 – 4x2 + 2bx + (b2 + 1)
C54 : x9 – bx8 – 11x7 + 9bx6 + (b2 + 37)x5 – 26bx4 – (3b2 + 45)x3

+ 28bx2 + (3b2 + 14)x – (b3 + 6b)
C96 : x16 – bx15 – 21x14 + 19bx13 + (b2 + 173 )x12 – 143bx11

– (13b2 + 723)x10 + 536bx9 + (67b2 + 1652)x8 – (b3 + 1090b)x7

– (169b2 + 2070)x6 + (3b3 + 1184b)x5 + (218b2 + 1328)x4

– (6b3 + 622b)x3 – (133b2 + 352)x2 + (5b3 + 114b)x
+ (b4 + 25b2 + 16)

I is the unit matrix of the size of A. The graph eigenvalues
are the zeros of the polynomials obtained by using the per-
mitted values of b. These are given in Table 2 for systems up
to C96. It is found that the eigenvalues corresponding to b =

Table 2. Eigenvalues of the -MOs of graphenes obtained as zeros of the reduced graph characteristic polynomials for systems up to C96
Graph eigenvalues

System b = 2 b = 1 b = –1 b = –2
(2-fold degenerate) (2-fold degenerate)

C6 2.0 1.0 –1.0 –2.0
C24 –1.2143, –1.0, –1.6751, –0.5392, 1.6751, 0.5392, 1.2143, 1.0

1.5392, 2.6751 1.0, 2.2143 –1.0, –2.2143 –1.5392, –2.6751
C54 –2.0, –1.9406, –2.3095, –1.6057, 2.3095, 1.6057, 2.0, 1.9406,

–1.0464, –1.0, –1.3915, –0.6818, 1.3915, 0.6818, 1.0464, 1.0,
0.5786,1.0, 0.3420, 1.0, –0.3420, –1.0, –0.5786, –1.0,
1.3526, 2.2155, 1.2375, 1.8053, –1.2375, –1.8053, –1.3526, –2.2155,
2.8401 2.6039 –2.6039 –2.8401

C96 –2.3928, –2.3414, –2.5820, –2.1310, 2.5820, 2.1310, 2.3928, 2.3414,
–1.6978, –1.6175, –1.9544, –1.3633, 1.9544, 1.3633, 1.6978, 1.6175,
–1.0760, –1.0, –1.2799, –1.0451, 1.2799, 1.0451, 1.0760, 1.0,
–0.8392, –0.3595, –0.7424, –0.2295, 0.7424, 0.2295, 0.8392, 0.3595,
0.6930, 0.8631, 0.4972, 1.0, –0.4972, –1.0, –0.6930, –0.8631,
1.2520, 1.5774, 1.0673, 1.2989, –1.0673, –1.2989, –1.2520, –1.5774,
1.5869, 1.9252, 1.5895, 1.8638, –1.5895, –1.8638, –1.5869, –1.9252,
2.5213, 2.9052 2.2536, 2.7628 –2.2536, –2.7628 –2.5213, –2.9052
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Fig. 5. Variation of HOMO-LUMO energy gap with increase in size of
the graphene sheet.

7. Conclusion
It has been shown that 6-fold rotational symmetry can be

utilized in conjunction with graph theoretical methods to ob-
tain the -MO energies of extended graphene sheets and
their HOMO and LUMO energy levels approach each other
asymptotically as the number of fused hexagonal rings in-
creases. The experimental observation of graphene as a
novel electronic material with zero band gap is thus explained
by a simple graph theoretical approach.
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