J. Indian Chem. Soc., Vol. 96, March 2019, pp. 349-354

Synthesis of a series of new Schiff bases having heterocyclic moiety and their microbial activity

R. Behal^a, S. Sharma^{b*}, T. Bansal^a, J. Gaba^a and S. Kaur^a

^aDepartment of Chemistry, ^bDepartment of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana-141 004, Punjab, India

E-mail: radhikabehal19@yahoo.com, sunita_sharma@pau.edu, taniabansal2@yahoo.com, jyotgcw@gmail.com, kaur.sandeep18@gmail.com

Manuscript received online 05 September 2018, revised 20 February 2019, accepted 26 February 2019

Heterocyclic compounds were synthesized using water based method. These were synthesized by reacting different aldehydes namely benzaldehyde, 2-chloro benzaldehyde, 4-chloro benzaldehyde, 2-nitro benzaldehyde and 3-nitro benzaldehyde with different heterocyclic amines like 4-amino phenazone and 4-amino-1,2,4-trizole. This method constitute an energy-efficient and environmentally benign greener chemistry version of the classical condensation reactions for Schiff base formation. These compounds were characterized by IR, ¹H NMR and ¹³C NMR spectroscopic techniques. The colored Schiff bases (1, 3, 5, 7 and 9) were also characterized by UV spectra. Synthesized anils were screened for their microbial activity against *Mesorhizobium* sp. (SB 271), *S. aureus, E. coli* and *Pseudomonas* sp. (PGPR 3). Maximum growth was inhibited by compounds 6 and 8 against *Mesorhizobium* sp. Compounds 1, 3, 4 and 10 showed maximum inhibited growth for *S. aureus*. Maximum *Pseudomonas* sp. growth was inhibited by compounds 2, 4 and 9. Maximum *E. coli* growth was inhibited by the compounds 2, 5 and 10. However, these compounds showed less microbial activity as compared to streptomycin except the compound 9 recorded higher microbial activity than streptomycin against *Pseudomonas* at 5000 ug/ml. All other anils including this 9 exhibited less activity than streptomycin at all the concentrations.

Keywords: Anils, heterocyclic moiety, water based method, UV, IR, ¹H NMR, ¹³C NMR, microbial activity.

Introduction

Schiff bases are used as substrate in the preparation of a large amount of bioactive and industrial compounds. It has been suggested that azomethine linkage (C=N) might be responsible for their biological activities¹. Schiff base approach is one of the most promising. These are associated with diverse biological activities like antibacterial, antifungal, antitubercular, anticancer and herbicidal properties^{2–4}. Heterocyclic chemistry is one of the most interesting and rapidly growing areas of chemical research. These compounds are organic compounds that have a ring structure containing hetero atoms such as nitrogen, oxygen or sulphur in addition to carbon.

Carbon-nitrogen double bond is widely distributed in nature, in the form of biological compounds which are important for the vital metabolism of the living organisms and in various synthetic compounds of agricultural, industrial and

pharmaceutical importance. Imine formation is of major importance in biological processes as many of these involve the initial binding of carbonyl compounds to an enzyme through imine formation. Anils are the condensation products of primary amines and aldehydes. Imines due to presence of carbon-nitrogen double bond in their molecules provide a potential site for both chemical and biological activities. This method constitutes an energy-efficient and environmentally benign greener chemistry version of the classical condensation reactions for Schiff bases formation. Water is used as a solvent for the synthesis of Schiff bases⁵ because it offers several advantages like inexpensiveness, noninflammable, nontoxic, easily available and safe to use and also its unique physical and chemical properties which increase the reactivity or selectivity⁶. Moreover use of water as solvent is undoubtedly the best alternative as there are generally no harsh reaction conditions and no need of vigorous drying of the solvent⁷⁻¹².

Results and discussion

Different substituted benzaldehydes were made to react with different heterocyclic amines by water based method (Scheme 1) to yield corresponding anils **3(a-e)**, **5(a-e)** whose structures were confirmed by IR, ¹H NMR and ¹³C NMR spectra. Anils **3(a-e)** having different colors were also characterized by UV spectra. The UV absorption was found in the range of 284–354 nm (HC=N-). In IR spectra an absorption was found in the range of 1670–1685 (C=N stretching), 2962–3038 (C-H stretching), 1654–1704 (C=O stretching) and 1591–1630 cm⁻¹ (C=C stretching). In H¹ NMR, two singlets appeared in the range of 7.26–7.54 due to azomethine hyrdrogens (CH=NH). In ¹³C NMR the signal of azomethines carbons (CH=NH) of all the anils were appeared in the range of 159.45–167.34 C₁ (-CH=N). Physical data (yield, melting

The results of screening of anils **3(a-e)** and **5(a-e)** against bacteria are shown in Tables 3, 4, 5 and 6. Maximum *Mesorhizobium* sp. growth was inhibited by compounds **3b**, **5a**, **5c** and **5d** showing inhibition zones at 13 and 15 mm. Maximum *E. coli* growth was inhibited by compounds **5a**, **3c** and **5e** showing inhibition zones at 19, 16 and 14 mm. Maximum *S. aureus* growth was inhibited by compounds **3a**, **3b** and **5e** showing inhibition zone 15 mm. Maximum *Pseudomonas* sp. growth was inhibited by compounds **5a** and **3e** showing inhibition zone 17 mm. This inhibition may be attributed to substitution of nitro and chloro group on phenyl ring. So overall it was observed that the compounds having substitution of nitro and chloro groups on phenyl ring exhibited more inhibition of bacteria as compared to compounds with no substitution.

X = H, 2-Cl, 4-Cl, 2-NO₂, 3-NO₂

Scheme I

point, state and colour) of anils was determined.

Microbial testing:

The synthesized anils viz. **3(a-e)** and **5(a-e)** were screened for their inhibitory effect on the growth of four bacterial species viz. *Mesorhizobium* sp. (SB 271), *E. coli, S. aureus* and *Pseudomonas* sp. (PGPR 3) at various concentrations.

Experimental

General:

Open capillaries methods were used to determine the melting points and are uncorrected. IR, ¹H NMR and ¹³C NMR spectra were got scanned from Sophisticated Analytical Instrumentation Facility (SAIF), Central Instrument Laboratory (CIL), Panjab University, Chandigarh. IR Spectra were

		Table 1. Physi	cal data of different ani	ls			
Sr. No.	Structure of compound	Molecular formula	Color	Melting point (°C)	Time (min)	Yield (%)	R _f
3a	$C_6H_5-C=N$ H_{H_5C} V N C_6H_5 C_6H_5 C_6H_5	C ₁₈ H ₁₇ N ₃ O	Yellowish brown	180–183	37	78	0.69
5a	$C_6H_5 - C = N - N \bigvee_N N$	C ₉ H ₈ N ₄	Off white	166–167	39	88	0.80
3b	$\begin{array}{c} OC_{c}H_{4}-C=N \\ H_{H_{5}}C \\ C \\ C \\ H_{5} \\ C \\ C \\ H_{5} \\ C \\ H_{5$	C ₁₈ H ₁₇ N ₃ ClO	Light yellow	180–182	30	74	0.62
5b	$CIC_6H_4 - C = N - N \bigvee_{N}^{\sim} N$	C ₉ H ₈ N ₄ Cl	White	120–122	36	82	0.75
3с	$\begin{array}{c} & \Pi C_{0}H_{1}-\prod_{H=0}^{C} = N \underbrace{ \begin{array}{c} & \\ H_{3}C \end{array}}_{I_{3}C} \underbrace{ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & CH_{3} \end{array}} \begin{array}{c} O \\ \\ & \\ & \\ & CH_{3} \end{array}$	C ₁₈ H ₁₇ N ₃ ClO	Light yellow	210–212	33	94	0.68
5c	$CIC_{6}H_{4}$ $-C=N-N$	C ₉ H ₈ N ₄ Cl	White	160–163	31	80	0.79
3d	$O_{2}NC_{6}H_{4}$ -C=N V_{N} $O_{1}H_{H_{5}}$ C H_{5} CH ₅	C ₁₈ H ₁₇ N ₄ O ₃	Yellow	215–217	32	95	0.70
5d	ŌNCII ^I −C=N-N ↓ ↓	$C_9H_8N_5O_2$	White	119–121	38	80	0.76
Зе	$O_2NC_0H_4-C=N$ H_1C H_3C H_3 H_3	C ₁₈ H ₁₇ N ₄ O ₃	Orange	215–218	35	97	0.73
5e	QNCH-C=NN /N H SN	$C_9H_8N_5O_2$	Off white	130–132	37	80	0.78
*Physic	cal state of all the synthesized produ	cts is solid.					

Behal et al.: Synthesis of a series of new Schiff bases having heterocyclic moiety and their microbial activity

recorded on Perkin-Elmer FTIR spectrophotometer with λ_{max} in cm⁻¹. ¹H NMR and ¹³C NMR spectra were recorded on Bruker Avance II 400 spectrophotometer using TMS as internal reference. UV spectra of coloured compounds were recorded on UV 2600 spectrophotometer Techcomp using chloroform as solvent. The chemical shifts were expressed in δ (ppm) values and the abbreviations 's' and 'm' stand for singlet and multiplet respectively. The purity of the compound was checked on silica gel G coated TLC plates and the visu-

alization was done in iodine chamber.

General procedure for the preparation of anils:

Different substituted benzaldehydes (0.005 mol) were made to react with various heterocyclic amines (0.005 mol) in water (10 ml) and stirred for various intervals of times (30– 39 min) at room temperature. The crude product was filtered, washed with water and dried. The formation and purity of the compound was checked by thin layer chromatography (Scheme I).

Table 2. Microbial activity of different anils on the growth of Mesorhizobium sp. at different concentrations (ug/ml)									
Compounds		Diameter of growth inhibition zone (mm)							
	5000	4000	3000	2000	1000	500	250	125	
3a	12	12	7	7	6	0	0	0	
5a	13	12	8	7	6	0	0	0	
3b	13	8	7	6	0	0	0	0	
5b	10	9	8	7	6	0	0	0	
3c	10	13	8	7	7	0	0	0	
5c	15	13	12	9	6	0	0	0	
3d	12	13	8	7	7	0	0	0	
5d	15	14	13	9	8	0	0	0	
3e	9	8	7	7	6	0	0	0	
5e	10	9	8	7	7	0	0	0	
Streptomycin	21	19	18	17	16	15	13	12	

 Table 3. Microbial activity of different anils on the growth of *E. coli* at different concentrations (ug/ml)

Compounds	Diameter of growth inhibition zone (mm)								
	5000	4000	3000s	2000	1000	500	250	125	
3a	10	11	11	10	8	0	0	0	
5a	19	19	11	10	9	0	0	0	
3b	10	12	12	9	0	0	0	0	
5b	11	13	11	10	11	0	0	0	
3c	16	12	10	11	9	0	0	0	
5c	8	10	10	10	8	0	0	0	
3d	9	10	10	10	10	0	0	0	
5d	13	12	13	12	10	0	0	0	
3e	12	12	11	10	10	0	0	0	
5e	14	12	11	11	9	0	0	0	
Streptomycin	21	19	18	17	16	15	13	12	

Table 4. Microbial activity of different anils on the growth of

 S. aureus at different concentrations (ug/ml)

Compounds	Diameter of growth inhibition zone (mm)								
	5000	4000	3000	2000	1000	500	250	125	
3a	15	10	10	9	8	7	0	0	
5a	10	9	9	8	7	7	0	0	
3b	15	14	15	9	8	8	0	0	
5b	14	13	12	11	9	11	0	0	
3c	9	9	9	8	8	7	0	0	
5c	9	8	8	9	8	6	0	0	
3d	12	10	9	8	7	0	0	0	
5d	13	11	10	9	9	8	0	0	
3e	9	7	7	6.5	0	0	0	0	
5e	15	12	11	10	9	8	0	0	
Streptomycin	21	19	18	17	16	15	13	12	

rseudomonas sp. (rGrR 3) at unierent concentrations (ug/mi)									
Compounds		Diameter of growth inhibition zone (mm)							
	5000	4000	3000	2000	1000	500	250	125	
3a	0	0	0	0	0	0	0	0	
5a	17	15	10	9	8	0	0	0	
3b	0	0	0	0	0	0	0	0	
5b	15	11	7	6.5	6	0	0	0	
3c	14	12	10	9	7	0	0	0	
5c	12	10	9	8	0	0	0	0	
3d	0	0	0	0	0	0	0	0	
5d	0	0	0	0	0	0	0	0	
3e	17	12	9	7	0	0	0	0	
5e	13	9	8	7	0	0	0	0	
Streptomycin	16	15	15	14	13	13	12	11	

Table 5. Microbial activity of different anils on the growth of

n (DCDD 2) at diff

J. Indian Chem. Soc., Vol. 96, March 2019

Biological study:

The newly synthesized Schiff bases were screened for their microbial activity against different bacteria viz. *Mesorhizobium* sp., *S. aureus*, *E. coli* and *Pseudomonas* sp.

Bacterial activity:

The synthesized compounds 3(a-e), 5(a-e) were tested for their effect on growth of selected bacteria viz. Mesorhizobium sp. (SB 271), E. coli, S. aureus and Pseudomonas sp. (PGPR 3). Method of screening for bacteria was filter paper disc method. Nutrient agar medium was used for E. coli, S. aureus¹³, King's B medium for Pseudomonas sp.¹⁴, Congo red yeast extract mannitol agar (CRYEMA) for Mesorhizobium sp. The medium was sterilized by autoclaving at 15 psi and 121°C for 20 min. The plates were prepared by pouring 15-20 ml of the sterilized media on sterilized petri plates and were allowed to solidify at room temperature. After keeping the plates for two days to ensure sterility, 3-4 days old broth of test organism was spread on specific media plates. The stock solutions of test compounds were prepared by dissolving in minimum quantity of acetone and then in water. It was further diluted with water to make the desired concentrations. Sterile filter paper discs moistened with test compound solution (in water) of different concentration were placed on the inoculated plates under sterile conditions. Disc moistened with water only served as control. The plates were incubated at 28±1°C for 24 h and the diameter of growth inhibition zone (mm) was measured.

4-(Benzylideneamino)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (**3a**):

Yield: 78%; m.p. 180–183°C; UV-Visible (λ_{max}): 284 and 332 nm (HC=N-); IR (KBr): 3037 (C-H aromatic stretching), 2923 (C-H aliphatic stretching), 1675 (C=N stretching), 1669 (C=O stretching), 1650 (C=C stretching), 1378 (C-N stretching), 904 (=C-H bending), 757 (C-H bending) and 693 cm⁻¹ (C=C bending); ¹H NMR (DMSO): δ 2.49 (3H, s, *CH*₃), 3.15 (3H, s, *CH*₃), 9.75 (1H, s, N=C-*H*), 7.26–7.50 (10H, m, Ar-*H*); ¹³C NMR (DMSO); δ 9.81 (CH₃), 35.31 (-N-CH₃), 167.59 (-CH=N), 159.75 (O=C-C-N-), 151.99 (CH₃-C=C), 116.89 (-C-N=CH), 121.84–134.49 (m, C-Ar).

N-Benzylidene-4H-1,2,4-trizol-4-amine (5a):

Yield: 88%; m.p. 166–167°C; IR (KBr): 3192 (C-H aromatic stretching), 3088 (C-H aliphatic stretching), 1555 (C=N stretching), 1516 (C=C stretching), 1335 (C-H stretching), 1189 (N-N stretching), 1061 (C-N stretching), 977 (=C-H bending), 716 (C-H bending) and 637 cm⁻¹ (C=C bending); ¹H NMR (DMSO): δ 7.97 (2H, s, CH₂), 7.19–7.48 (5H, m, Ar-H), 8.12 (1H, s, N =C-H); ¹³C NMR (DMSO): 149.08 (N=C-N), 189.10 (-CH=N), 128.02–133.94 (m, C-Ar).

4-(2-Chlorobenzylideneamino)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one **(3b)**:

Yield: 74%; m.p.180–182°C; UV-Visible (λ_{max}): 288 and 333 nm (HC=N-); IR (KBr): 3053 (C-H aromatic stretching), 2935 (C-H stretching of aliphatic group), 1672 (C=N stretching), 1668 (C=O stretching), 1648 (C=C stretching), 1380 (C-N stretching), 1132 (C-Cl stretching), 905 (=C-H bending), 762 (C-Cl bending), 750 (C-H bending) and 698 cm⁻¹ (C=C bending); ¹H NMR (DMSO): δ 2.50 (3H, s, CH₃), 3.18 (3H, s, CH₃), 10.16 (1H, s, N=C-H), 7.26–7.49 (9H, m, Ar-H); ¹³C NMR (DMSO): δ 9.61 (CH₃), 35.10 (-N-CH₃), 159.45 (-CH=N), 152.28 (O=C-C-N-), 150.44 (CH₃-C=C), 116.77 (-C-N=CH), 124.54-136.60 (m, C-Ar).

N-(2-Chlorobenzylidene)-4H-1,2,4-trizol-4-amine (5b):

Yield: 82%; m.p.120-122°C; IR (KBr): 3107 (C-H aromatic stretching), 2352 (C-H stretching of aliphatic group), 1663 (C=N stretching), 1507 (C=C stretching), 1338 (C-H stretching), 1211 (N-N stretching), 1054 (C-N stretching), 1130 (C-Cl stretching), 969 (=C-H bending), 755 (C-Cl bending), 716 (C-H bending) and 682 cm⁻¹ (C=C bending); ¹H NMR (DMSO): δ 7.46 (2H, s, CH₂), 7.19–7.24 (4H, m, Ar-H), 7.86

(1H, s, N=C-H); ¹³C NMR (DMSO): 143.87 (N=C-N), 153.44 (-CH=N), 133.3 (-C-CI), 127.02–130.01 (m, C-Ar).

4-(4-Chlorobenzylideneamino)-1,5-dimethyl-2-phenyl-1Hpyrazol-3(2H)-one (3c):

Yield: 94%; m.p. 210–220°C; UV-Visible (λ_{max}): 289 and 333 nm (HC=N-); IR (KBr): 3059 (C-H aromatic stretching), 2938 (C-H aliphatic stretching), 1676 (C=N stretching), 1670 (C=O stretching), 1649 (C=C stretching), 1378 (C-N stretching), 1164 (C-Cl stretching), 946 (=C-H bending), 767 (C-Cl bending), 748 (C-H bending) and 698 cm⁻¹ (C=C bending); ¹H NMR (DMSO): δ 2.48 (3H, s, CH₃), 3.16 (3H, s, CH₃), 9.72 (1H, s, N=C-H), 7.26–7.50 (9H, m, Ar-H); ¹³C NMR (DMSO): δ 9.63 (CH₃), 35.22 (-N-CH₃), 161.37 (-CH=N), 152.28 (O=C-C-N-), 151.97 (CH₃-C=C), 116.63 (-C-N=CH), 121.85–136.26 (m, C-Ar).

N-(4-Chlorobenzylidene)-4H-1,2,4-trizol-4-amine (5c):

Yield: 80%; m.p. 160–163°C; IR (KBr): 3120 (C-H aromatic stretching), 2934 (C-H stretching of aliphatic group), 1582 (C=N stretching), 1520 (C=C stretching), 1353 (C-H stretching), 1203 (N-N stretching), 1056 (C-N stretching), 1171 (C-Cl stretching), 953 (=C-H bending), 759 (C-Cl bending), 728 (C-H bending) and 673 cm⁻¹ (C=C bending); ¹H NMR (DMSO): δ 8.0 (2H, s,CH₂), 7.33–7.58 (4H, m, Ar-H), 8.21 (1H, s, N =C-H); ¹³C NMR (DMSO): 148.23 (N=C-N), 191.22 (-CH=N), 137.13 (-C-Cl), 128.30–130.70 (m, C-Ar).

1,5-Dimethyl-4-(3-nitrobenzylideneamino)-2-phenyl-1Hpyrazol-3(2H)-one (**3d**):

Yield: 95%; m.p. 215–217°C; UV-Visible (λ_{max}): 284 and 335 nm (HC=N-); IR (KBr): 3064 (C-H aromatic stretching), 2944 (C-H stretching aliphatic), 1670 (C=N stretching), 1705 (C=O stretching), 1647 (C=C stretching), 1381 (C-N stretching), 1522 (N=O stretching), 1491 (N ... O stretching), 955 (=C-H bending), 735 (C-H bending) and 699 cm⁻¹ (C=C bending); ¹H NMR (DMSO): δ 2.53 (3H, s, CH₃), 3.21 (3H, s, CH₃), 9.81 (1H, s, N=C-H), 7.26–7.59 (9H, m, Ar-H); ¹³C NMR (DMSO): δ 9.84 (CH₃), 35.05 (-N-CH₃), 161.44 (-CH=N), 159.31 (O=C-C-N-), 148.31 (CH₃-C=C), 119.97 (-C-N=CH), 123.95–134.29 (m, C-Ar).

N-(3-Nitrobenzylidene)-4H-1,2,4-trizol-4-amine (5d):

Yield: 80%; m.p.119–121°C; IR (KBr): 3090 (C-H aromatic stretching), 2970 (C-H aliphatic stretching), 1593 (C=N stretching), 1490 (C=C stretching), 1393 (C-H stretching),

1215 (N-N stretching), 1053 (C-N stretching), 1515 (N=O stretching), 1464 (N \pm O stretching), 977 (=C-H bending), 763 (C-H bending) and 662 cm⁻¹ (C=C bending); ¹H NMR (DMSO): δ 7.24 (2H, s, CH₂), 6.88–7.22 (4H, m, Ar-H), 7.92 (1H, s, N=C-H); ¹³C NMR (DMSO); 138.80 (N=C-N), 156.44 (-CH=N), 137.10 (-C-NO₂), 128.43–137.01 (m, C-Ar).

1,5-Dimethyl-4-(2-nitrobenzylideneamino)-2-phenyl-1Hpyrazol-3(2H)-one (**3e**):

Yield: 97%; m.p. 215–218°C; UV-Visible (λ_{max}): 284 and 354 nm (HC=N-); IR (KBr): 3072 (C-H aromatic stretching), 2917 (C-H aliphatic stretching), 1672 (C=N stretching), 1700 (C=O stretching), 1649 (C=C stretching), 1385 (C-N stretching), 1520 (N=O stretching), 1486 (N \pm O stretching), 944 (=C-H bending), 758 (C-H bending) and 698 cm⁻¹ (C=C bending); ¹H NMR (DMSO): δ 2.47 (3H, s, CH₃), 3.20 (3H, s, CH₃), 10.02 (1H, s, N=C-H), 7.21–7.86 (9H, m, Ar-H); ¹³C NMR (DMSO): δ 9.81 (CH₃), 34.94 (-N-CH₃), 161.38 (-CH=N), 159.16 (O=C-C-N-), 152.39 (CH₃-C=C), 116.26 (-C-N=CH), 119.78–134.15 (m, C-Ar).

N-(2-Nitrobenzylidene)-4H-1,2,4-trizol-4-amine (5e):

Yield: 80%; m.p. 130–132°C; IR (KBr): 3101(C-H aromatic stretching), 2955 (C-H aliphatic stretching), 1678 (C=N stretching), 1502 (C=C stretching), 1450 (C-H stretching), 1216 (N-N stretching), 1058 (C-N stretching), 1518 (N=O stretching), 1462 (N \pm O stretching), 976 (=C-H bending), 751 (C-H bending) and 687 cm⁻¹ (C=C bending); ¹H NMR (DMSO): δ 7.99 (2H, s, CH₂), 7.21–7.59 (4H, m, Ar-H), 7.92 (1H, s, N=C-H); ¹³C NMR (DMSO); 157.64 (N=C-N), 167.34 (-CH=N), 143.96 (-C-NO₂), 128.21–132.51 (m, C-Ar).

Acknowledgement

The authors are thankful to the Panjab University, Chandigarh for providing IR, ¹H NMR and ¹³C NMR spectral data of synthesized compounds. The authors are thankful to Dr. Poonam Sharma, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana for providing help in microbial activity.

References

- G. K. Rao, R. Kaur and P. N. S. Pai, *Der. Pharm. Chem.*, 2011, 3, 323.
- P. Panneerselvam, R. R. Nair, G. Vijayalakshmi, E. H. Subramanian and S. K. Sridhar, *Eur. J. Med. Chem.*, 2005, 40, 225.
- S. K. Sridhar, M. Saravan and A. Ramesh, *Eur. J. Med. Chem.*, 2001, 36, 615.
- O. M. Walsh, M. J. Meegan, R. M. Prendergast and T. A. Nakib, Eur. J. Med. Chem., 1996, 31, 989.
- 5. J. Schmeyers, F. Toda, J. Boy and G. Kaupp, *J. Chem. Soc., Perkin Trans.*, 1998, **1**, 989.
- 6. C. J. Li and T. H. Chan, Tetrahedron Lett., 1991, 32, 7017.
- G. J. Ten Brink, I. W. C. E. Arends and R. A. Sheldon, *Science*, 2000, 287, 1636.
- 8. U. M. Lindstroem, Chem. Rev., 2002, 102, 275.
- 9. R. Breslow, Acc. Chem. Res., 1991, 24, 159.
- S. Kobayashi and K. Manabe, Acc. Chem. Res., 2002, 35, 533.
- S. Kobayashi and K. Manabe, *Pure Appl. Chem.*, 2000, 72, 1373.
- 12. J. B. F. N. Engberts and M. Blandamer, *J. Chem. Commun.*, 2001, **18**, 1701.
- 13. D. S. Arora and G. J. Kaur, J. Nat. Med., 2007, 61, 313.
- E. O. King, M. K. Ward and D. E. Raney, J. Lab. Clin. Med., 1954, 44, 301.