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This is to introduce a time-local effective hamiltonian unified cluster cumulant method based on the time-dependent multi-
reference cluster cumulant (TDMRCC) and thermal cluster cumulant (TCC) strategy developed by Mukherjee and his coworkers.
A factorized ansatz for UIP = [UI]ex [UI]MP  with P = |i >  |0 >  |0f >, where |i >, |0 > and |0f > denote the purely
quantum mechanical vacuum state, the thermal vacuum state, the base state for the solvent degrees of freedom respectively,
and [UI]ex consists of operators admixing the thermally as well as the stochastically projected model space functions with
that of the virtual space outside the model space whose functions govern the time-evolution of [UI]M via the time-local ef-
fective operator, Veff [, , t](=<< VI[UI]ex > >f ), where < ... > and < ... >f denote thermal and stochastic averaging respec-
tively. The exponential ansatz is introduced both for [UI]ex and [UI]M and these ansatze are normal ordered with respect to

both the thermal and the stochastic variables, i.e. [UI]ex = 
p,q,f
m,nS

β f

e
   
  
   

 and [UI]M =  k,kX
β

e , where m, n denotes sys-

tem boson creation and destructions operators and p, q denotes both boson creation and destructions operators. The aver-
aged evolution operator, << U1 (t) > >f with respect to both the thermal boson variables in thermal equilibrium and the sto-
chastic variables is obtained. Finally, the mathematical expression for the second order cluster cumulant [X0,0](2) is derived
for a quantum particle trapped in a 1-dimensional anharmonic oscillator potential coupled both to the stochastic and thermal
baths.

Keywords: .

1. A prelude
It is of great interest to develop microscopic theories for

studying the dynamic and thermodynamic properties of quan-
tum systems in the ground and in the excited states with
many degrees of freedom often encountered in the experi-
mental situations.

freedom called the “subsystem” and its dynamics is a com-
bined interplay of that of subsystem and bath (thermal, sto-
chastic/microscopic). If the time-scale of the subsystem, SS
is far apart from that of the bath, B then the process is called
Markovian process. If, SS B, then the process is called
non-Markovian process.

Our interest is to study non-Markovian process where
bath makes its presence felt via a time delayed effective in-
teraction (memory effect) whose actual form depends upon
the way the bath is averaged out (e.g. microscopic/stochas-
tic/thermal) and which causes quantum interference leading
to dissipation, de-phasing, line-shape etc. that experimen-
talists actually observe. Although the study of such a system
is relatively simple for the ground state, the situation for the
excited state is nontrivial displaying richness and complex-
ity. It is not possible for us to mention all the theoretical stud-
ies in this evenly growing field of research. It is worthy to

Fig. 1. A schematic diagram of a subsystem interacting with bath (ther-
mal, stochastic/microscopic).

The experimentalists observe a few relevant degrees of
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mention a few of them to begin with. Heller and his cowork-
ers1,2 developed the time-dependent wave-packet formal-
ism which provide exact solution for Gaussian potential en-
ergy surfaces both at zero-temperature and at non-zero tem-
perature. But it is not suitable for non-Gaussian potential
energy surfaces as it is usually the case. Some other rel-
evant developments to study the non-Gaussian problems with
their specific features are time-dependent self-consistent field
(TDSCF) and multi-configurational variants (MCTDSCF)3,
wave-packet-path-integral method4, matrix-technique of
Balian and Berezin5, the projection operator technique of
Nakajima-Zwanzig-Mori6–8, reduced density-matrix based
methods9, time-path approach of Tanimura et al.10, the path-
integral based method of Domcke et al.11,12. Mukherjee et
al.13–15 developed a nonperturbative time-local effective
Hamiltonian approach called time-dependent multi-reference
coupled cluster method (TDMRCC). The TDMRCC method
admits of a factorized ansatz and a normal ordered cluster
expansion representation of evolution operator which guar-
antees the formulation to be size-extensive, scaled linearly
with the number of degrees of freedom and allowed a sys-
tematic truncation scheme. Some of the ideas of TDMRCC
method are exploited along with to develop thermal cluster
cumulant (TCC) method16,17 for computing equilibrium ther-
mal averages in an efficient and systematic manner.

In this paper, a systematic nonperturbative unified clus-
ter cumulant method is developed for studying the dynamic
and the equilibrium thermodynamic properties of the quan-
tum systems which are simultaneously coupled to the sto-
chastic and thermal bath. The evolution operator, U(t) is rep-
resented by an exponential ansatz to guarantee size exten-
siveness of the measured averaged propertries and the
ansatz is normal ordered with respect to the stochastic and
to the thermal variables simultaneously. Substituting the nor-
mal ordered ansatz in Heisenberg equation of motion and
applying the field theoretic tool like the Wick’s reordering theo-
rem, a closed set of Time-dependant Multi-reference Unified
Cluster Cumulant (TDMRUCC) equations are obtained. Fi-
nally, the formalism is applied for calculating dynamic and
spectroscopic properties of a double well potential coupled
both with the thermal bath and stochastic bath simultaneously.

2. A unified cluster cumulant formalism to study the
averaged sub-dynamics of  system-bath composite in
the quantum domain

The generic hamiltonian for the system-bath composite

system is given by

H(t) = HS(t) + HB(t) + VSB(t) (1)

where HS(t), HB(t) and VSB(t) are the hamiltonians of the sub-
system, bath and the system-bath interaction respectively.
Our task is to solve the Heisenberg equation of motion of the
time-evolution operator U(t) which is given by

U (t)
i ———— = H(t)U(t) (2)

t

In the interaction representation, eq. (2) is given by

UI (t)
i ———— = VI(t)UI(t) (3)

t

where UI (t) = e–iH0t U (t); VI (t) = e–iH0t V (t) e–iH0t, and H0 is
the exactly solvable Hamiltonian.

The general solution of eq. (3) is given by
t

IU t T i V t dtI0
( ) exp ( )    

  (4)

where T is the ordering operator in time.
The question is:  how to obtain thermally and stochasti-

cally averaged time-evolution Operator,

<< UI (t) >>f  (say) ?

Let us choose some selected group of states from which
evolution is supposed to take place and define  a Model Space
Projection Operator, P as a direct product space of these
states such that P = |i >  |0 >  |0f  >, where |i >, |0 >
and |0f  > denote the purely quantum mechanical vacuum
state, the thermal vacuum state, the base state for the sol-
vent degrees of freedom respectively. That is, << UI(t) >>f
PUI(t)P. In the spirit of time-depemdent multireference clus-
ter cumulant (TDMRCC)13–15 and thermal cluster cumulant
(TCC)16,17 formalism, let us introduce a factorized Ansatz
for PUI(t)P as

UIP = [UI]ex . [UI]M P (5)

where [UI]ex consists of operators admixing the thermally as
well as the stochastically projected model space functions
with that of the virtual space outside the model space whose
functions govern the time-evolution of [UI]M via the time-lo-
cal effective operator given by

Veff [, , t ] = << VI[UI]ex > >f (6)
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Physically, the situation is equivalent to the formation of a
dressed subsystem which is driven by the effective operator,
Veff [, , t ] which depends on the temperature variable, 
[= (kT)–1] and on that in turn depends on the anharmonic
strength of the system oscillator, the system-bath coupling
constant, and the strength of the colored noise.

The time-evolution of [UI]ex and [UI]M is governed by the
following equations:

[UI]ex
i ———— = VI[UI]ex – [UI]ex .Veff [, , t ] (7)

t

[UI]M
i ———— = Veff [, , t ].[UI]M (8)

t

In order to maintain size-extensiveness and simplify opera-
tor differentiation, let us introduced exponential ansatz both
for [UI]ex and [UI]M and make them normal ordered with re-
spect to both thermal and stochastic variables.

[UI]ex = 
p,q,f
m,nS

β f

e
   
  
   

(9)

[UI]M  =  k,kX
β

e (10)

where {...} denotes thermal normal ordering with respect to
creation/annihilation operators and {...}f denotes normal or-
dering with respect to the stochastic fluctuation variables, f.

Substituting the above normal ordered eqs. (9) and (10)
in the eqs. (5)-(8) and using the techniques of normal order-
ing and generalized Wick’s theorem, the following time-de-
pendent equations for the cluster operators p,q,f

m,nS  and Xm,n
is derived

 1 1
1 1

p,q,f
p,q,f
m,n p ,q ,f p ,q ,f

m ,n m ,n
β f m,n

S
i V S

t
2 2
2 2I[ ] .exp

                  
–

 
p,q,f

t,l,f
r,s eff k,k

β f m,n

S V β, ξ, texp .[ ( )]
               

(11)

 k,k
eff l l l l

β k,k

X
i V β, ξ, t

t
[ ( )] exp(X )   

  
     (12)

where  1 1
1 1

p,q,f

p ,q ,f p ,q ,f
I m ,n m ,n

β f m,n

V S 2 2
2 2

[ ] .exp
               

 denotes con-

tractions of system (e.g. aa †  and/or a a† ) and bath (e.g.

k kb b †  and/or kkb b† ) thermal boson variables, and/or con-

tractions of stochastic variables, e.g. f.f . Since

P 
p,q,f
m,nS

i
t

 
 
  

P  = 0 in eq. (11) taking the P – Projection from

both side, we have

 1 1
1 1

p,q,f

p ,q ,f p ,q ,f
m ,n m ,n

β f m,n

V S 2 2
2 2I[ ] .exp

               
 =

 
p,q,f

t,l,f
r,s eff k,k

β f m,n

S V β, ξ, texp .[ ( )]
               

(13)

Equating the connected closed component from both sides
of eq. (13), we have

[Veff (, , t )]k,k =

 1 1
1 1

β
f

clcl
p ,q ,f p ,q ,f
m ,n m ,n

k,k

V S 2 2
2 2

cl

I[ ] .exp
      
   
      

(14)

where the superscript “cl” denotes closed component with
no thermal and stochastic variables free after contraction.

In fact, we solve for the cluster amplitudes p,q,f
m,nS  starting

with an initial value and also the effective potential, [Veff [,
, t ]]l,l which is used to obtain the value of Xk,k with k = 0, 1,
2, ... by solving eq. (12). The advantage of factorization of
UI into [UI]ex and [UI]M with added normalization is also evi-
dent through the ease in taking time-derivative of the expo-
nential of operators and convenient disentanglement of them.
The normal ordered representation prevents S.S  and X.X
contractions which results in terminating the infinite power
series of S and/or X to a finite power in the right-hand side of
eqs. (11) and (12).
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Finally, the averaged evolution operator with respect to
both the thermal boson variables in thermal equilibrium and
the stochastic variables

<< UI(t) >>f  = PUI(t) P

 p,q,f
m,n k,kS X

ββ f

= P e e P
   
  
   

(15)

where << UI(t) >>f  is exact for system in which the Hamil-
tonian operators obey “closed” Lie algebra. Otherwise, we
have to restrict our computation up to finite rank of cluster
operators (here “rank” means the sum of powers of a† and a
operators).

It is worthy to note that the cluster amplitudes p,q,f
m,nS  and

Xk,k when propagated in imaginary-time, one can calculate
the equilibrium partition function as

< UI() >

 p,q,f
k,km,nS X X X

ββ f

= P e P e e0,0 0,0      
   

(16)

where X—k,k
 is the operator part of Xk,k other than the pure

number.

3. Calculations of observable properties
We can calculate the following observable properties :

(i)  Survival probabilities, Pi i(t):
Pii(t) = |< i |UI(t)|i >|2 (17)

That is,
P00(t) = |< 0|UI(t)|0 >|2 = |exp[X0,0(t)]|2. (18)
P11(t) = |< 1|UI(t)|1 >|2 = |exp[X0,0(t)](1.0 + X1,1(t))|2 (19)
etc.

where P00(t), P11(t), …. are the survival probabilities of ground,
first excited,….. states respectively. One can plot the calcu-
lated values of P00(t), P11(t) against time, t to observe the
time-variation.

(ii) Transition probabilities, Pf  i  (t):
Pf i (t) = |< f |UI(t)|i >|2 (20)

(iii) Power spectra:
The power spectrum can be obtained from the expres-

sion given by

i t
M β fI U t e dt

0
( ) ( )       (21)

One can plot the calculated values of I() against  the fre-
quency, , to observe the spectral pattern.

4. Perturbative solution of TDMRUCC equations
It is instructive to derive the perturbative variant of the

TDMRUCC eqs. (11) and (12) in interaction representation.
Then, the first order TDMRUCC equation of external cluster
cumulant, p,q,f

m,nS(1) (t) is given by

  
p,q,f p,q,f
m,n

I β f m,n

S
i V t

t

(1)
[ ( )]

      
(22)

and  that of the Cluster Cumulant, (1)Xk,k (t) is given by

 k,k
I β k,k

X
i V t

t

(1)
[ ( )]

     
(23)

It is worthy to note that in eq. (22) there is no contribution
from the second term of eq. (11), i.e.

 
p,q,f

t,l,f
r,s eff k,k

β f m,n

S V β, ξ, texp .[ ( )]
               

, because [Vefff (,

, t )]k,k  is itself a closed operator.
Likewise, the second order TDMRUCC equations of ex-

ternal cluster cumulant, p,q,f
m,nS(2)  (t) is given by

 1 1
1 1

p,q,f
p,q,f
m,n p ,q ,f p ,q ,f

I m ,n m ,n
β f m,n

S
i V S

t
2 2
2 2

(2)
(2)

(1)[ ] .exp
                  

+  1 1
1 1

p,q,f

p ,q ,f
I l,lm ,n

β f m,n

V X

(2)

(1)[ ] .exp
               

(24)

  k,k
eff l l l l

β k,k

X
i V t

t

(2)(2)
(1)[ ( , , )] .exp X   

  
     

(25)

It is worthy to note that the n-th order perturbative cluster
cumulants p,q,fn

m,nS( ) (t) and (n)Xk,k (t) can be obtained by us-
ing the value of cluster cumulant of lower orders and subse-
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quent time-integration. This would be more clear while cal-
culating with a simple system.

Finally, the averaged evolution operator up to n-th order
can be calculated as

(n)[<< UI(t) >>f ] = (n)[R (t)] = P (n)[UI (t)] P = k,k
n Xe

( )
(26)

We shall show explicitly its second order variant, (2)[R (t)],
taking a concrete example to illustrate the theory in Section
5.

5. Illustrative application
5.1. The normal ordered working hamiltonian at finite
temperature:

Let us consider a model system-bath composite Hamil-
tonian given by

s k
s s s s k k k

P pH X X X y
2 2

2 2 2 4 2 21 1
2 2 2 2

 
           

 

+ gstoc. × 2E0 Cos (0t) × f (t) * Xs + kk.Xs * yk (27)
where the symbols have their usual meaning k = 1 to NB,
maximum number of both variables and f (t) is the Ornstein-
Uhlenbech colored noise having stationary Gaussian distri-
bution. The stochastic variable f (t) satisfies the following
properties:

f (t) = 0 = f (t1) ... f (t2n+1), t ;

t tf t f t F t t e 1 2| |
1 2 1 2( ). ( ) ( , ) .

2
       

 

f (t1)... f (t2n) = all (n)pairs f (t1) . f (t2)
where  is the coloured noise strength.

In the second quantization representation, the Hamilto-
nian becomes

s
s

H a a a a† † 21 ( )
2 2

            

k k kk
s

a a B B† 4 †
2

1( )
24

               

+  gs  i t i tf t a e ae0 0†( )      

+ kk  k ka B aB† † (28)

where gs  stoc. sg E 02 / 2    and k  k s k/ 2 2   

are the modified coupling constants of the system-stochas-
tic bath  and system-thermal bath respectively; a†/a and B†

k/
Bk are the creation/annihilation operators of the system de-
gree of freedom and k-th thermal bath degrees of freedom.

Let us apply the Bogolyubov transformation to the sys-
tem operators a†/a leading to A†/A operators as

A = N (a – t1a†); A† = N (a† – t1a) ; (29)

such that [A†, A] = 1, and N = t 2
1

1

(1 ) .

This leads to the following transformation
a = N (A† + t1A) ; a† = N (A + t1A†); (30)
(a† + a) = K . (A† + A) (31)
(a†a) = N2 . (1 + t12) A†A + N2 . t1 (A†2 + A2) + N2t12) (32)

where K =
t
t
1

1

(1 )
(1 )

 . (33)

The hamiltonian in eq. (28) in terms of A† and A becomes

s
s

t
H A A K A A

t

2
† 2 † 21

2
1

1
. . ( )

21

            

s
s

tK A A A A
t

4 † 4 † 2 21
2 2

1
. ( ) . . ( )

4 1

          
      

s
t

t

2
s 1

2
1

.
2 1

      
    

+ gs × f (t) × [A† . (N . e–i0t + N . t1 . e–i0t )]
+ gs × f (t) × [A . (N . t1 . e–i0t + N . e–i0t )]

+ kk (Bk
†Bk + 1–2 ) + kk [N . (A†Bk + ABk

†)
+ N . t1 . (A†Bk

† + ABk )] (34)
Let us apply thermal normal ordering operation both on the
system part and thermal-bath part of the above hamiltonian
(eq. (34)) in the following way

(A†A) = {A†A} + n; (AA†) = {A†A} + (n + 1);
n = [eM – 1.0]–1 (35)

(A† + A) = {(A† + A)} (36)
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(A† + A)2 = {(A† + A)2} + (2n + 1) (37)
(A† + A)3 = {(A† + A)3} + (6n + 3) . {(A† + A)} (38)
(A† + A)4 = {(A† + A)4} + (12n + 6) . {(A†2 + A2)}

+ (24n + 12) . {A† A}+ (12n2 + 12n + 3) (39)

(Bk
†Bk ) = {Bk

†Bk } + nk; (BkBk
† ) = {Bk

†Bk } + (nk + 1);
nk = [ek – 1.0]–1 (40)

where M is the modified optimum Thermal Hartree fre-
quency to be shown in eq. (43).

After the above transformations, the hamiltonian in eq.
(34) becomes

s
s s

t
H K K n

t  

2
2 41

2 2
1

1
. . . (6 3) .

1

                           

{A†A}+

s
s s

t K K n
t  

2 41
2 2
1

. . (6 3) .
21 2

                          

β β
s

A + A K A  A†2 2 4 † 4
2{ } . .{( ) }

4

 
     

s
s s

s

t t
n K

t  t  

2 2
21 1

2 2
1 1

1
. . . .

2 21 1

                              

s
n K n  n4 2

2
3(2 1) . . (4 4 1)

4

 
        

+ gs × f (t) × [A† . (N . e–i0t  + N . t1 . e–i0t )] +
+ gs × f (t) × [A . (N . t1 . e–i0t  + N . e–i0t )] +

 k k k kkk kβ
B B n† 1

2
       
 

 

+ kk [N . (A†Bk + ABk
†) + N . t1 . (A†Bk

† + ABk )] (41)

Let us define a new parameter 1 = [(1 – t1)/(1 + t1)], that
leads to

  K N 2
1 1 1(1/ ); [(1 ) /2 ] ;   t1 = [(1–1)/(1 + 1)];

   
             

t t
t t

2
2 21 1
1 1 1 12 2

1 1

1 [(1 )/2 ] ; [(1 )/4 ];
1 1

     and

 
    

t
t

2
21

1 12
1

[(1 ) /4 ]
1

  .

The thermal normal ordered Hamiltonian (eq. (41)) in terms
of 1 becomes

s
s s

H n
2
1

2 21 1 1

1 1 1. . . (6 3) .
2

                              

{A†A}+

s
s s

n
2
1

2 21 1 1

1
. . (6 3) .

4 2 2

                              

β β
s

A + A K A  A†2 2 4 † 4
2{ } . .{( ) }

4

 
     

s
s s

s
n

 

22
1 1

1 1 1

1(1 ). . . .
2 4 2 2

                               

s
n n 2

2 2
1

3(2 1) . (2 1)
4

      
   

+ gs × f (t) ×
i t i tA e e0 0† 1 1

1 1

(1 ) (1 ). . .
2 2

     
        

+ gs × f (t) ×
i t i tA e e0 01 1

1 1

(1 ) (1 ). . .
2 2

     
        

+ kk {Bk
†Bk } + kk (nk + 1–2 ) +

+ kk 
1

1

(1 )
2

 



. (A†Bk + ABk

†) +

1

1

(1 )
2



. (A†Bk

† + ABk)] (42)

Let us implement “Thermal Hartree” condition for which the
coefficient of {A†2 + A2} will be zero and under this condi-
tion the coefficient of {A†A} will be (s1) = M (say),
where M is the modified harmonic frequency correspond-
ing to an optimized Gaussian.
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Therefore, the thermally normal ordered Hamiltonian
under finite-temperature Hartree condition takes the simpli-
fied form given by

H = M  . {A†A}+ 
 
 
  M

2(2 )



. {A†4 + A4 + 4 × (A†3A)

+ 4 × (A†A3) + 6 × (A†2 A2)} +

+ f t t †

1
( ) ( ) A

  
          

sg

f t t
1

( ) ( ) A
  
          

sg

 k k k k k kk kβ
B B A B AB† † †1

1

(1 ) ( )
2

         


kkA B AB† †1

1

(1 ) ( )
2


    

 
H (43)

where

s
s sH n

2 2
1 1

1 1

1 1
2 4 2

                   
         

M M
n n 2

2
3(2 1) (2 1)

2 (2 )

   
            

k kk n 1
2

    
 

 ,

i t i tt e e0 01 1
1( ) (1 ) (1 )
2

  
        

= [cos(0t) – i 1 sin(0t)],

i t i tt e e0 01 1
1( ) (1 ) (1 )
2

  
        

= [cos(0t) + i 1 sin(0t)]

Transforming the above Hamiltonian (eq.(43)) into its in-
teraction representation with respect to both the system’s
optimized frequency and the thermal-bath frequencies, we
have

M MiΩ t iΩ tI I
I

A AV e e
† 4 4

4 4
4! 4!


                

  
M MI IiΩ t iΩ tI I I IA A A A A A

e e
†3 † 3 †2 2

2 2
3!1! 1!3! 2!2!





                        

MiΩ ts
I

g f t t A e†

1
( ) ( )

  
            

MiΩ ts
I

g f t t A e
1

( ) ( ) 


  
            

   M ki Ω t
k k k II β

A B e ( )†1
,

1

(1 )
2

         
  

   M ki Ω t
k k I k I β

A B e ( )†1
,

1

(1 )
2

          
  

   M ki Ω t
k k I k I β

A B e ( )† †1
,

1

(1 )
2

         
  

   M ki Ω t
k k I k I

β
A B e H( )1

,
1

(1 )
2

            
  

(44)

where = [24(2M)2] . This is the required normal or-
dered potential at finite temperature.

5 .2 .  The  c lus ter  cumulants  upto second order  for
ground state of the subsystem:

As discussed in Section (4), the second order cluster
clumulant for the model space operators of the subsystem,
denoted by (2)Xk,k(t), can be obtained if we know the first
order cluster cumulants of the virtual space operator, denoted
by (1) p,q,f

m,nS (t), that being connected to the interaction
potential,VI leading to only the k numbers of system creation
operators, A†

I and equal numbers of system annihilation op-
erators, AI. For the ground state problem, the second order
cluster cumulant for the model space operator is (2)X0,0(t).
Let us compute the first order cluster cumulants as follows.

The time-dependent equation for the first order cluster
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cumulant, (1) S 0,0,0
4,0 (t), is given by

  MiΩ t
I β f

S
i V t Λ e

t

(1) 0,0,0 0,0,04,0 4
4,0

{[ ( )]}


    
(45)

Integrating eq. (45), we have

MiΩ t

M
S t Λ e

Ω
4(1) 0,0,0

4,0
1( ) ( 1)

4
 

     
 

(46)

Similarly, the first order cluster cumulant, S(1) 0,0,0
0,4 (t), is given

by

   MiΩ t
I β f

S
i V t Λ e

t

(1) 0,0,0 0,0,00,4 4
0,4

{[ ( )]} 
    

(47)

Integrating eq. (47), we have

MiΩ t

M
S t e

Ω
4(1) 0,0,0

0,4
1( ) ( 1)

4
 

     
 

(48)

For the first order cluster cumulant, S(1) 0,0,0
3,1 (t), is given by

  MiΩ t
I β f

S
i V t e

t

(1) 0,0,0 0,0,03,1 2
3,1

{[ ( )]}


     
(49)

Integrating eq. (49), we have

MiΩ t

M
S t e

2Ω
2(1) 0,0,0

3,1
1( ) ( 1)

 
     

 
(50)

Similarly, the first order cluster cumulant, S(1) 0,0,0
1,3 (t), is given

by

MiΩ t

M
S t e

2Ω
2(1) 0,0,0

1,3
1( ) ( 1) 

     
 

(51)

For the first order cluster cumulant, S(1) 0,0,0
2,2 (t), is given by

 I β f

S
i V t

t

(1) 0,0,0 0,0,02,2
2,2

{[ ( )]}


    
(52)

Integrating eq. (52), we have

S t i t(1) 0,0,0
2,2 ( )     (53)

For the first order cumulant, S(1) 0,0,1
1,0 (t), we have

 I β f

S
i V t

t

(1) 0,0,1 0,0,11,0
1,0

{[ ( )]}


   

Mi Ω tte θ t e
1

( )


  
         

sg
(54)

where + (t) is defined in eq. (43) and generalised Novikov’s
Theorem18 has been applied.

Integrating eq. (54), we have

M
S t

Ω i
(1) 0,0,1 1

1,0
01

(1 )( )
( )2

   
             

sg

Mi Ω i te 0( )( 1.0)     

MΩ i
1

01

(1 )
( )2

   
            

sg

Mi Ω i te 0( )( 1.0)     (55)

Similarly, for the first order cumulant, S(1) 0,0,1
0,1 (t), we have

 I β f

S
i V t

t

(1) 0,0,1 0,0,10,1
0,1

{[ ( )]}


   

Mi Ω tte θ t e
1

( ) 


  
         

sg
(56)

where  – (t) is defined in eq. (43) and generalised Novikov’s
Theorem18 has been applied.

Integrating eq. (56), we have

M
S t

Ω i
(1) 0,0,1 1

0,1
01

(1 )( )
( )2

   
            

sg

Mi Ω i te 0( )( 1.0)      

MΩ i
1

01

(1 )
( )2

   
            

sg

Mi Ω i te 0( )( 1.0)     (57)

For the cumulant, kS(1) 0, ,0
1,0 (t), we have
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k k

I β f

S
i V t

t

(1) 0, ,0 0, ,01,0
1,0

{[ ( )]}


   

M ki Ω t
k k e ( )1

1

(1 )
2

        
  

(58)

This leads to

k k
k

M k
S t

Ω
(1) 0, ,0 1

1,0
1

(1 )( )
( )2

    
           

M ki Ω te ( )( 1.0)  (59)

Similarly, for the cumulant, kS(1) 0, ,0
0,1 (t), we have

 
k k

I β f

S
i V t

t

(1) 0, ,0 0, ,00,1
0,1

{[ ( )]}


   

M ki Ω t
k k e ( )1

1

(1 )
2

         
  

(58)

This leads to

k k
k

M k
S t

Ω
(1) 0, ,0 1

0,1
1

(1 )( )
( )2

    
          

M ki Ω te ( )( 1.0)   (59)

For the cumulant, kS(1) ,0,0
1,0 (t), we have

 
k k

I β f

S
i V t

t

(1) ,0,0 ,0,01,0
1,0

{[ ( )]}


   

M ki Ω t
k k e ( )1

1

(1 )
2

        
  

(60)

This leads to

k k
k

M k
S t

Ω
(1) ,0,0 1

1,0
1

(1 )( )
( )2

    
           

M ki Ω te ( )( 1.0)  (61)

Similarly, for the cumulant, kS(1) ,0,0
0,1 (t), we have

 
k k

I β f

S
i V t

t

(1) ,0,0 ,0,00,1
0,1

{[ ( )]}


   

M ki Ω t
k k e ( )1

1

(1 )
2

         
  

(62)

This leads to

k k
k

M k
S t

Ω
(1) ,0,0 1

0,1
1

(1 )( )
( )2

    
          

M ki Ω te ( )( 1.0)   (63)

The time-dependent equation for the first order cluster
cumulant, (1)X0,0(t), is given by

(1)X0,0
i ———— = < H > (64)

t

where < H > is purely a number. The solution of eq. (53) is
simply

(1)X0,0(t) = – i < H > t (65)
where < H > is given by eq. (43).

Similarly, the time-dependent equation for the second
order cluster cumulant, (2)X0,0(t), is given by

(2)X0,0
i ———— = [{[VI (t)]} ]0,0 (66)

t

where

I βV t n S4 (1) 0,0,0
4,0 0,40,0

1{ [ ( )] }
4!

        +

n S4 (1) 0,0,0
0,4 4,0

1 ( 1)
4!

      

n n S3 (1) 0,0,0
3,1 1,3

1 ( 1)
3!

       +

n n S3 (1) 0,0,0
1,3 3,1

1 ( 1)
3!

       

n n S2 2 (1) 0,0,0
2,2 2,2

1 ( 1)
2!2!

       +

tG e n S0,0,1 (1) 0,0,1
0,1 1,0( 1)

2
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tG e n S0,0,1 (1) 0,0,1
1,0 0,12

      
 

+

BN k k
kk G n n S,0,0 (1) 0, ,0

0,1 1,01 ( 1)     

BN k k
kk G n n S,0,0 (1) 0, ,0

1,0 0,11   

BN k k
kk G n n S0, ,0 (1) ,0,0

0,1 1,01 ( 1) ( 1)      

BN k k
kk G n n S0, ,0 (1) ,0,0

1,0 0,11 ( 1)    

where n and nk are given by eqs. (35) and (40) respectively
and 4,0 = 0,4 = 3,1 = 1,3 = 2,2 = .

Substituting the value of S(1) 0,0,0
0,4 , S(1) 0,0,0

4,0 , S(1) 0,0,0
1,3 ,

S(1) 0,0,0
3,1 , S(1) 0,0,0

2,2 , S(1) 0,0,1
1,0 , S(1) 0,0,1

0,1 , kS(1) 0, ,0
1,0 , kS(1) 0, ,0

0,1 ,

kS(1) ,0,0
1,0  and  kS(1) ,0,0

0,1 , from the above eqs. (45)-(63) into
eq. (67) and integrating eq. (66), the explicit expression of
(2)X0,0(t) is derived as

M
X t n

Ω

2
(2) 2 4

0,0
1 1( )

24 4
        

   

  Mi Ω t
Me i Ω t4 1 4  

  Mi Ω t
M

M
n e i Ω t

Ω

2
42 41 1 ( 1) 1 4

24 4
            

   

  Mi Ω t
M

M
n n e i Ω t

Ω

2
22 31 1 ( 1) 1 2

6 2
            

   

  Mi Ω t
M

M
n n e i Ω t

Ω

2
22 31 1 ( 1) 1 2

6 2
            

   

tn n
2

2 2 21 ( 1)
4 2

               

sG G n
Ω

0,0,1 1
0,1

1

(1 )( 1)
2

         
 

i Ω i t te e
Ω i i

1( )

1

( 1) ( 1)
( ) ( )

    
  

    

sG G n
Ω

0,0,1 1
0,1

2

(1 )( 1)
2

         
 

i Ω i t te e
Ω i i

2( )

2

( 1) ( 1)
( ) ( )

    
  

    

sG G n
Ω

0,0,1 1
1,0

3

(1 )
2

        
 

i Ω i t te e
Ω i i

3( )

3

( 1) ( 1)
( ) ( )

    
  

    

sG G n
Ω

0,0,1 1
1,0

4

(1 )
2

        
 

i Ω i t te e
Ω i i

4( )

4

( 1) ( 1)
( ) ( )

    
  

    

BN k
k kk G n n

Ω
,0,0 1

0,11 2
5

1 ( 1)

 
         
 



  iΩ te iΩ t5 51  

  BN iΩ tk
k kk G n n e iΩ t

Ω
6,0,0 1

61,01 2
6

1 1


           
 
 



BN k
k kk G n n

Ω
0, ,0 1
0,11 2

6

1 ( 1) ( 1)

          
 
 



  iΩ te iΩ t6 61  

BN k
k kk G n n

Ω
0, ,0 1
1,01 2

5

1 ( 1)

 
         
 



  iΩ te iΩ t5 51   .

where Gs = sg

12

 
   

, k = k

12

 
   

,

1 = 0 + M – i, 2 = 0 – M + i,
3 = 0 + M + i, 4 = 0 – M – i,
5 = M – k, and 6 = M + k.
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It is worthy to note that the  n-th order perturbative clus-
ter cumulants p,q,fn

m,nS( ) (t) and (n)Xk,k(t)  can be obtained by
using the value of cluster cumulant of lower orders and sub-
sequent time-integration.

Thus, the value of X0,0(t) up to second order is given by
(2)X—0,0(t) = (1)X0,0(t) + (2)X0,0(t) (69)

Finally, having obtained the value of X—0,0(t), the ground
state Survival Probability, P0,0(t) is given by

P0,0(t) = |< 0|UI (t)|0 > |2 = |exp[(2)X—0,0(t)] |2 (70)

The power spectrum can be obtained from the expres-
sion given by

i tI X t e dt(2) 0,00
( ) exp ( )

      (71)

From the power spectrum we can predict the effect of
anharmonicity, system-bath coupling strength, colored noise
strength, temperature of both the system and the bath de-
grees of freedom on the spectral line shape and peak posi-
tion.

6. The concluding remarks
In this paper, a time-dependant multireference unified

cluster cumulant (TDMRUCC) method has been introduced
for computing the effect of bath or the surrounding degrees
of freedom on a quantum particle trapped in a 1-dimensional
anharmonic oscillator potential that is coupled to both the
stochastic and the thermal bath. This formalism uses the
key features of the time-dependent multi-reference cluster
cumulant (TDMRCC) method and the thermal cluster
cumulant (TCC) method developed by Mukherjee and his
coworkers guarantying its size-consistency. As an initial ven-
ture, the explicit analytical expression of the amplitude of the
model space cumulant, X0,0(t) up to second order is derived
in order to get the dynamics of the quantum particle in pres-
ence of both the thermal and the stochastic bath and their
mutual interplay. The nonperturbative cluster cumulant equa-

tions under a suitable truncation scheme with respect to the
power of the cluster amplitudes of exponential ansatz will be
presented in the forthcoming paper.
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