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Fullerene structures can be built up step by step by adding C2-fragments to pentagons and hexagons of sp2-carbon atoms
systematically; if in this building process fusion of pentagons are avoided and the Euler formula is  obeyed, structures of car-
bon cages corresponding to the IPR fullerenes are obtained. Graph theoretical method involving 5- and 6-fold rotational sym-
metry can be used to obtain the -MO energies of the sub-structures and also of the complete cage structure. This has been
done in the present work and it has been shown that the total -electron energy per atom gradually decreases as the sub-
structures grow with addition of C2-fragments and in the last step when the cage closure is complete, the stabilization is very
much appreciable. The method has been shown with the IPR fullerenes C60, C70, C72 and C84.
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1. Introduction
Fullerenes with all the 12 pentagons isolated by inter-

vening hexagons, called IPR fullerenes, are known to be ex-
ceptionally stable1 compared to other fullerenes of the same
number of carbon atoms but with fused pentagons. Such
stability is obviously related to bond angle strains which, in
turn, results primarily from -electron repulsions. However,
these carbon clusters consist of all near-sp2 hybridized C
atoms and the interactions of the -electrons contributing to
their stability through -MO formation are also of consider-
able importance. Theoretically rigorous methods like all elec-
tron Green’s function calculations and density functional
theory are currently being applied for fullerenes, nanotubes
and graphenes2–6.

Graph theoretical methods are known7–9 to yield the rela-
tive stabilities of -conjugated systems in a simpler way and
the results are known to be reliably in line with those pre-
dicted by the sophisticated methods. Graphs representing
the structures of fullerenes can be built up step by step10–12

by adding C2-fragments to pentagons and hexagons of sp2-
C atoms; in this building process fusion of pentagons is
avoided and the Euler formula is followed to obtain closed
carbon cages. Graph theoretical method involving 5- and 6-
fold rotational symmetry can be used to obtain the -MO
energies of the sub-structures and also of the complete
fullerene. In the present work, the total -electron energy

per atom has been calculated graph theoretically for the build-
ing units (sub-structures) and also of the whole IPR fullerene
to investigate how the contribution of -electrons to stability
gradually changes in the series of sub-structures and the
whole structure; this has been done with the IPR fullerenes
C60, C70, C72 and C84.

2. Step by step construction of the fullerene graphs
from pentagons and hexagons by adding single verti-
ces and K2 sub-graphs

Starting from a pentagon, (A), a C10 structure (B), which
is a fullerene sub-structure, can be obtained by adding one
vertex to each vertex of the pentagon. In each ‘bay’ region
thus produced a K2 sub-graph is placed and the pendent
vertices of C10 (B) are joined to the vertices of K2 to get a
hexagon; the original pentagon (A) is now surrounded by
five fused hexagons giving a C20 sub-structure (C) of a
fullerene. To each ‘vee’ region of C20, a K2 sub-graph is added
and thus the sub-structure (C) is surrounded by five isolated
pentagons, thereby yielding C30, (D). In this way, progres-
sively, one obtains the C50 sub-structure, (F) (Fig. 1). This is
common to both C60 and C70. Starting from (F) the construc-
tion of fullerene structures (H) for C60 and (K) for C70 can be
obtained (Fig. 2). Construction of the series (A),(B),...,(K)
of sub-structures and structures for C72 and C84 starting from
a hexagon is done by a similar procedure (Figs. 3 and 4).
Details of this procedure can be found in references10,11. It
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Fig. 1. Construction of sub-structures of [60]- and [70]-fullerenes maintaining 5-fold symmetry.

Fig. 2. Cage closure for [60]- and [70]-fullerenes starting from the C50 sub-structure and maintaining 5-fold symmetry.
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is to be noted that 5-fold rotational symmetry is maintained
in the series (A),(B),...,(K); similarly the series (A), (B),...,(K)
maintains 6-fold rotational symmetry.

3. Construction of reduced graphs for the structures
and sub-structures by utilizing rotational symmetry

Following the method developed by Davidson13 and
Shen14 a graph with N vertices having r-fold rotational sym-
metry (r 2) can be classified into orbits such that a r-fold
rotation transforms any vertex of a particular orbit into an-
other vertex of the same orbit but vertices of different orbits
are not interconvertible by that rotation. Scheme for labeling
of the vertices for utilizing r-fold rotation is as follows:

Orbit No. 1:
Vertex labels: 1,(1+ N/r),(1+ 2N/r),(1+ 3N/r),.....,r-th term

Orbit No. 2:
Vertex labels: 2,(2 + N/r),(2 + 2N/r),(2 + 3N/r),.....,r-th term
…………………

Orbit No. r:
Vertex labels: r,(r + N/r),(r + 2N/r),(r + 3N/r),.....,r-th term
This labeling scheme is illustrated for C60 fullerene (H) in
Fig. 5. Such a labeling scheme makes the adjacency matrix
of any graph with r-fold rotational symmetry circulantly parti-
tioned:

Fig. 3. Construction of sub-structures of [72]- and [84]-fullerenes maintaining 6-fold symmetry.

For example with the coranulene sub-structure (C20 sys-
tem, (C) of Fig. 1) the following matrices will appear as the
component blocks of the whole adjacency matrix:



J. Indian Chem. Soc., Vol. 96, December 2019

1486

represented as

Bj+1 = 
r

r j
r

r

( 1)
1

0







 A ,  j = 0 to (r – 1),

where , 
i

re i
2

, 1


    (1)

4. Construction of the reduced graphs for the struc-
tures and sub-structures

Any block Bj+1 may be considered as the adjacency ma-
trix of a graph which may be constructed such that there are
N
r  vertices, the non-zero diagonal elements of Bj+1 are the

self-loop weights of the vertices and the non-zero off-diago-
nal elements are the edge-weights; zero diagonal elements

According to the Davidson-Shen algorithm13,14 circulantly
partitioned matrices resulting from r-fold rotational symme-
try transform into block diagonal matrices; there will be r num-

ber of blocks of dimension 
N N
r r

  
 

 and each block matrix is

Fig. 4. Cage closure for [72]- and [84]-fullerenes starting from the C60 sub-structure and maintaining 6-fold symmetry.
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correspond to unweighted vertices and whenever an off-di-
agonal element) (p,q) is zero, the vertices p and q are dis-
connected. A graph thus obtained is a reduced graph repre-
senting a block Bj+1. A single reduced graph represents all
the blocks, Bj+1, j = 0 to (r – 1) with the permitted values of

i
re

2
  . In constructing the reduced graph, the following

identities related to the r-th roots of unity are utilized.
In case of 5-fold symmetry,

m + (m)* = 2, – 1 5 1 5 1 5 1 5, , ,
2 2 2 2 2 2 2 2
      

for m = 0, 1, 2, 3 and 4 respectively.
In case of 6-fold symmetry,
m + (m)* = 2,1,–1,–2,–1,1 for m = 0, 1, 2, 3, 4 and 5

respectively.
In this way the reduced graphs for all the structures and

sub-structures of the fullerenes under consideration have
been drawn and are shown in Fig. 6 where a = m. Two points
are to be mentioned here: (i) almost all the reduced graphs
are directed graphs and (ii) the structures and sub-structures
of the fullerene pair (C60, C72) have similar series of reduced
graphs; same is the case with the pair (C70, C84). However,
since  is different for 5- and 6-fold rotational symmetry, the
vertex- and edge-weight are different in the reduced graphs
which appear to be similar.

As an illustration we show here the common form of the
block matrices for the IPR fullerenes C60 and C72:

Fig. 5. Vertex labeling of C60 fullerene using 5-fold symmetry.

These blocks are represented by the reduced graph (H, H)
in Fig. 6.

5. Characteristic polynomials and eigenvalues of the
structures and sub-structures of the fullerenes

The characteristic polynomials of the reduced graphs in
terms of b (= a + a*) for the structures and sub-structures of
the systems C60, C70, C72 and C84 are given in Table 1. These
polynomials were constructed by the usual Laplacian expan-
sion of the determinant |xI – Bj+1| where I is the unit matrix of
the size of Bj+1. The graph eigenvalues are the zeros of the
polynomials obtained by using the permitted values of b.
Since one value of b is 2 for both 5- and 6-fold symmetries,
the corresponding eigenvalues for all the systems under study

are collected in Table 2. With b = 
1 5
2 2

 
    

 for 5-fold sym-

metry the eigenvalues are doubly degenerate and are given
in Table 3. Eigenvalues resulting from b = ±1, –2 for 6-fold
symmetry are collected in Table 4 for all the structures and
sub-structures under study; in this case the eigenvalues are
doubly degenerate for b = ±1 and non-degenerate for b
= –2.

6. Variation of total -electron energy per atom in the
series of structures and sub-structures

It may be noted that the sub-structures (A to F) of the
fullerenes C60 and C70 are the same up to the C50 unit. From
this the open C60 sub-structure (I) can be obtained by add-
ing five K2 subgraphs vertically in the ‘bay’ regions and then
the C60 fullerene cage (H) is completed by joining the pen-
dent vertices. Similarly, the open C70 sub-structure (J) is
obtained from (F) by adding five K2 subgraphs horizontally
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Fig. 6. Reduced graphs of the structures shown in Figs. 1-4 on application of 5- and 6-fold rotational symmetries.
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Table 1. Characteristics polynomials of the reduced graphs shown in Fig. 6 [b = a + a*]
Reduced
graph Characteristics polynomial
(A, A) x – b
(B, B) x2 – bx – 1
(C, C) x4 – bx3 – 4x2 + 2bx + (b2 + 1)
(D, D) x6 – bx5 – 7x4 + 5bx3 + (b2 – b + 10)x2 + (b2 – 5b – 2)x – (b2 – 3b + 2)
(E, E) x8 – bx7 – 10x6 + 8bx5 + (b2 – 2b + 28)x4 + (2b2 – 17b – 2)x3 – (4b2 – 8b + 24)x2 – (3b2 – 10b – 2)x – (b3 – 3b2 + 4b – 5)
(F, F) x10 – bx9 – 13x8 + 11bx7 + (b2 – 3b + 55)x6 + (3b2 – 38b – 2)x5 – (7b2 – 19b + 91)x4 – (12b2 – 50b – 8)x3 – (2b3 – 13b2 + 30b

– 57)x2 – (b3 – 10b2 + 19b + 6)x + (2b3 – 9b2 + 12b – 9)
(G, G) x12 – bx11 – 16x10 + 13bx9 + (2b2 – 3b + 90)x8 + (3b2 – 57b – 4)x7 – (18b2 – 28b + 218)x6 – (b3 + 17b2 – 105b – 28)x5 – (4b3

– 48b2 + 75b – 226)x4 + (3b3 + 20b2 – 75b – 44)x3 + (9b3 – 46b2 + 65b – 82)x2 + (b4 – 3b3 – 3b2 + 9b + 12)x – (2b3 – 9b2 + 12b
–9)

(H, H) x12 – 2bx11 + (b2 –16)x10 + 28bx9 – (10b2 + 3b – 90)x8 – (2b3 – 6b2 + 134b + 4)x7 – (3b3 – 28b2 – 32b + 218)x6 + (l6b3 – 42b2

+ 268b + 28)x5 + (b4 + 10b3 – 19b2 – 101b + 226)x4 + (4b4 – 38b3 + 76b2 – 210b – 44)x3 – (3b4 – b3 + 21b2 – 101b + 82)x2 – (6b4

– 30b3 + 38b2 – 34b – 12)x – (b5 – 4b4 + 9b3 – 19b2 + 18b – 9)
(I, I) x12 – bx11 – 16x10 + 14bx9 + (b2 - 4b + 91)x8 + (4b2 – 68b – 2)x7 – (10b2 – 36b + 230)x6 – (27b2 – 144b – 14)x5 – (3b3 – 33b2

+ 98b – 268)x4 – (3b3 – 50b2 + 130b + 24)x3 + (10b3 – 46b2 + 94b – 132)x2 + (4b3 – 27b2 + 40b + 12)x – (b4 – 7b3 + 19b2 – 28b
+ 20)

(J, J) x14 – bx13 – 19x12 + 16bx11 + (2b2 – 4b + 135)x10 + (4b2 – 93b – 4)x9 – (24b2 – 48b + 453)x8 – (b3 + 34b2 – 250b – 40)x7 – (6b3

– 98b2 + 190b – 752)x6 + (4b3 + 84b2 – 318b – 116)x5 + (29b3 – 174b2 + 298b – 588)x4 + (2b4 – 5b3 – 66b2 + 160b + 112)x3

+ (2b4 – 34b3 + 124b2 – 176b + 184)x2 – (2b4 –8b3 – 4b2 + 20b + 24)x –(b4 – 7b3 + 19b2 – 28b + 20)
(K, K) x14 – 2bx13 + (b2 – 19)x12 + 34bx11 – (13b2 + 4b – 135)x10 – (2b3 – 8b2 + 212b + 4)x9 – (4b3 – 55b2 – 52b + 453)x8 + (22b3 – 78b2

+  612b + 40)x7 + (b4 + 24b3 – 84b2 – 228b + 752)x6 + (6b4 – 84b3 + 238b2 – 840b – 116)x5 – (4b4 + 28b3 – 400b + 588)x4 – (24b4

– 136b3 + 266b2 – 480b – 112)x3 – (2b5 – 10b4 + 18b3 – 94b2 + 264b – 184)x2 – (2b5 – 22b4 + 70b3 – 86b2 + 72b + 24)x + (2b5

– 13b4 + 30b3 – 39b2 + 40b – 20)

Table 2. Non-degenerate eigenvalues of the structures and sub-structures of the fullerene pairs (C60, C72) and (C70, C84) resulting from
b = 2 in the characteristic polynomials

Pair of Reduced
Non-degenerate eigenvaluessystems graph

(C5, C6) (A, A) 2.00000
(C10, C12) (B, B) –0.41421, 2.41421
(C20, C24) (C, C) –1.21431, –1.00000, 1.53918, 2.67513
(C30, C36) (D, D) –2.00000, –1.34292, 0.00000, 0.52931, 2.00000, 2.81360
(C40, C48) (E, E) –2.41421, –1.37213, –1.00000, –0.08464, 0.41421, 1.33257, 2.24144, 2.88275
(C50, C60) (F, F) –2.61803, –1.61803, –1.37987, –0.41421, –0.38196, 0.61803, 0.70863, 1.75102,

2.41421, 2.92022
(C60, C72) (G, G) –2.61803, –1.6I803, –1.58889, –1.36110, –0.38197, –0.30620, 0.38196, 0.61803,

1.24312, 2.04927, 2.61803, 2.96380
(C60,  C72) (H, H) –2.61803, –1.61803, –1.43828, –1.30278, –0.38197, –0.13856, 0.61803,

1.00000, 1.82025, 2.30278, 2.75660, 3.00000
(C60, C72) (I, I) –2.73205, –2.00000, –1.38207, –1.00000, –0.60118, 0.00000, 0.26006, 0.73205,

1.23602, 2.00000, 2.54456, 2.94241
(C70, C84) (J, J) –2.73205, –2.00000, –1.58328, –1.37654, –1.00000, –0.50516, 0.00000, 0.15863,

0.73205, 0.79533, 1.61133, 2.22362, 2.20458, 2.97148
(C70, C84) (K, K) –2.73205, –2.00000, –1.41421, –1.34292, –1.00000, –0.41421, 0.00000, 0.52931,

0.73205, 1.41421, 2.00000, 2.41421, 2.81360, 3.00000



J. Indian Chem. Soc., Vol. 96, December 2019

1490

Table 3. Doubly degenerate eigenvalues of the graphs shown in Figs. 1-4 resulting from

b = 
1 5
2 2

 
    

 for 5-fold symmetry

System Graph Eigenvalues
C5 A 0.61803 –1.61803
C10 B –0.73764, 1.35567 –2.09529, 0.47726
C20 C –1.77748, –0.47725, 0.77748, 2.09529 –2.46672, –1.35567, 0.73764, 1.46673
C30 D –2.12438, –1.43566, –0.09433, 0.61803, –2.55715, –1.61803, –1.32015, 0.74989,

1.21902, 2.43535 1.19940, 1.92800
C40 E –2.37719, –1.69925, –0.93665, –0.29946, –2.58314, –1.89257, –1.50774, –1.17137,

0.83145, 0.84804, 1.66186, 2.58923 0.72141, 1.18097, 1.50224, 2.13218
C50 F –2.53314, –1.86770, –1.35421, –0.85935, –2.59271, –2.07497, –1.61802, –1.41664,

–0.21577, 0.61803, 1.00000, 1.16095, –1.11747, 0.77241, 1.00000, 1.51435,
1.99749, 2.67173 1.67201, 2.24302

C60 G –2.56316, –2.01848, –1.65193, –1.31075, –2.59693, –2.39203, –1.89568, –1.53604,
–0.51421, –0.20078, 0.48229, 0.86998, –1.37857, –0.43209, 0.71631, 1.00000,
1.00000, 1.49509, 2.27943, 2.75055 1.16173, 1.56868, 1.85554, 2.31183

C60 H –2.56156, –2.00000, –1.61803, –1.30278, –2.61803, –2.56156, –2.00000, –1.61803,
–0.38197, –0.13856, 0.61803, 1.00000, –1.43828, –1.30278, 0.61803, 1.00000,
1.00000, 1.56154, 2.30278, 2.75660 1.00000, 1.56154, 1.82025, 2.30278

C60 I –2.62790, –2.04567, –1.59776, –1.05910, –2.59682, –2.19023, –1.70213, –1.61804,
–0.84574, –0.20870, 0.61803, 0.87055, –1.30218, –1.07187, 0.73282, 1.10179,
1.09426, 1.47895, 2.21958, 2.72153 1.20638, 1.69796, 1.81414, 2.31016

C70 J –2.64601, –2.13440, –1.81334, –1.46154, –2.60318, –2.40073, –2.06165, –1.66599,
–1.05517, –0.52139, –0.18486, 0.54573, –1.44707, –1.29173, –0.42388, 0.73233,
0.68696, 1.09425, 1.12874, 1.78430, 0.93137, 1.20248, 1.34510, 1.75222,
2.41943, 2.77533 1.95559, 2.35711

C70 K –2.64515, –2.12435, –1.78737, –1.43566, –2.62463, –2.56054, –2.13642, –1.69070,
–1.05474, –0.40545, –0.09433, 0.61803, –1.61745, –1.32018, –1.25467, 0.72228,
0.81185, 1.09426, 1.21902, 1.82482, 0.74990, 1.19940, 1.27053, 1.74743,
2.43544, 2.77968 1.92797, 2.35103

Table 4. Eigenvalues of the graphs shown in Figs. 1-4 resulting from b = ±1, –2 for 6-fold symmetry
Eigenvalues

System Graph Doubly degenerate Doubly degenerate Non-degenerate
C6 (A) 1.00000 –1.00000 –2.06000
Cl2 (B) –0.61803, 1.61803 –1.61803, 0.61803 –2.41421, 0.41421
C24 (C) –1.67513, –0.53918, –2.21431, –1.00000, –2.67513, –1.53918,

1.00000, 2.21431 0.53918, 1.67513 1.00000, 1.21431
C36 (D) –2.08613, –1.41421 –2.36846, –1.52615, –2.73205, –1.73205,

0.00000, 0.57199, –1.00000, 0.78771, –1.41421, 0.73205,
1.41421, 2.51413 1.00000, 2.10709 1.41421, 1.73205

C48 (E) –2.38492, –1.63305, –2.43779, –1.88398, –2.74401, 1.84432,
–0.91509, –0.24030, –1.19568, –1.00000, –1.73205, –1.24341,
0.74275, 1.00000, 0.60470, 1.23970, 0.90925, 1.00000,
1.77757, 2.65305 1.37287, 2.30017 1.73205, 1.92250
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C60 (F) –2.55703, –1.80735, –2.48211, –2.08054, –2.74667, –1.93102,
–1.35469, –0.76796, –1.41421, –1.26130, –1.90211, –1.48355,
–0.18979, 0.64919, –0.92099, 0.69552, –1.17557, 0.79346,
0.90308, 1.31949, 0.92983, 1.41421, 1.17557, 1.34823,
2.07724, 2.72782 1.71528, 2.40432 1.90211, 2.01956

C72 (G) –2.57837– –1.94851, –2.51919, –2.30082, –2.74667, –2.40479,
–1.59932, –1.31787, –1.83747, –1.41421, –1.93102, –1.66278,
–0.48203, –0.18479, –1.06197, –0.43848, –1.48355, –0.42305,
0.44232, 0.90287, 0.65308, 0.82092, 0.79346, 1.00000,
1.00000, 1.61074, 1.22800, 1.41421, 1.34823, –1.44457,
2.35166, 2.80330 1.97560, 2.48033 2.01956, –2.04605

C72 (H) –2.57686, –1.92091, –2.53586, –2.35284, –2.74668, –2.74668,
–1.54437, –1.30285, –1.90921, –1.41421, –1.93102, –1.93102,
–0.30120, –0.14267, –1.16027, –0.94574, –1.48356, –1.48356,
0.72639, 0.90310, 0.56372, 0.76951, 0.79346, 0.79346,
1.22641, 1.72275. 1.14703, 1.41421, 1.34824, 1.34824,
2.39545, 2.81477 1.94938, 2.4 7426 2.01956, 2.01956

C72 (I) –2.65843, –2.02505, –2.51417, –2.20086, –2.74728, –2.00000,
–1.56219, –1.00000 –1.64055, –1.43883, –2.00000, –1.63254,
–0.80367, –0.13642, –1.00000, –1.00000, –1.41421, –1.12344,
0.53851, 1.00000, 0.64784, 1.00000, 0.84700, 1.00000,
1.00000, 1.58896, 1.22064, 1.51119, 1.41421, 1.57965,
2.28528, 2.77301 1.94749, 2.46724 2.00000, 2.07661

C84 (J) –2.67807, –2.09797, –2.54816, –2.32477, –2.74816, –2.40497,
–1.75038, –1.45580, –2.03219, –1.49124, –2.00000, –1.89089,
–1.00000, –0.53662, –1.37755, –1.00000, –1.45439, –1.41421,
–0.11808, 0.45579, –0.43366, 0.62435, –0.41870, 0.81467,
0.73182, 1.00000, 0.91966, 1.00000, 1.00000, 1.19066,
1.26523, 1 .86794, 1.43972, 1.58148, 1.41421, 1.77532,
2.48364, 2.82473 2.12406, 2.51829 2.00000, 2.13646

C84 (K) –2.67009, –2.08613, –2.56155, –2.36864, –2.76155, –2.73205,
–1.70650, –1.41421, –2.08613, –1.52615, –2.00000, –2.00000,
–1.00000, –0.39883, –1 .41421, –1. 00000, –1.73205, –1.41421,
0.00000, 0.57199, –1 .00000, 0.57199, –1.36332, 0.73205,
1.00000, 1.00000, 0.78771, 1.00000, 1.00000, 1.00000,
1.41421, 1.94219, 1.41421, 1.56155, 1.41421, 1.73205,
2.51413, 2.83323 2.10709, 2.51413 2.00000, 2.12488

Table-4 (contd.)

in the ‘bay’ regions of (F) and then five K2 subgraphs verti-
cally in the resulting bays of (I); joining the pendent vertices
of J one gets the C70 fullerene structure (K). For this reason
the series corresponding to the fullerene pairs (C60, C70) have
five identical sub-structures. Variation of the total -electron
energy per atom in  unit for the structures and sub-struc-
ture of these two fullerenes having 5-fold rotational symme-

try is displayed in Fig. 7(a); since  is negative, Fig. 7(a)
reveals that the stability progressively increases with size of
the sub-structures and a substantial increase is observed
when the cage is closed. Similarly the pair of fullerenes C72
and C84 have six common sub-structures [(A) to (F)] and
the final cage structures for both the fullerenes can be ob-
tained from F. Variation of total -electron energy per atom
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Table 5. Total -electron energy per atom for the structures and
sub-structures

5-Fold rotational symmetry 6-Fold rotational symmetry
Srtucture/ Total -electron Srtucture/ Total -electron

sub-structure energy (in ) sub-structure energy (in )
per atom per atom

A 1.17082 A 1.33333
B 1.21601 B 1.21676
C 1.43688 C 1.44049
D 1.44121 D 1.44508
E 1.49029 E 1.49235
F 1.50848 F 1.51076
G 1.49524 G 1.49700
H 1.55302 H 1.55650
I 1.51492 I 1.51647
J 1.50390 J 1.50480
K 1.55448 K 1.55646

decrease as the sub-structure grow in size with addition of
C2-fragments and in the last step when cage closure is com-
plete, the stabilization is very much appreciable. This has
been shown with four IPR fullerenes, namely, C60, C70, C72
and C84.
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Fig. 7. Variation of total -electron energy per atom in the series of sub-structures and structure of (a) C60 and C70 and (b) C72 and C84.

for this series is shown in Fig. 7(b). A steep decrease in sta-
bility from (A) to (B) (corresponding to benzene  6-
radialene) results from conversion of aromatic to non-aro-
matic structure; however, sharp increase in stability during
cage closure [(G) to (H) for C72 and (J) to (K) for C84] is
observed in this series also.

7. Conclusion
By utilizing 5- and 6-fold rotational symmetries in con-

junction with graph theoretical methods it has been estab-
lished that the total -electron energy per atom gradually


