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Biphenyl is a privileged scaffold observed in several marketed drugs and is known to predominantly bind to a wide range of
proteins with high specificity. Fused imidazole is another privileged structure which is found in several bioactive compounds.
The present investigation describes the design and synthesis of a biprivileged compound library comprising biphenyl linked
fused imidazoles and their activity against NCI-60 cell line to identify potential ‘hits’ for further anti-cancer drug discovery. In
the preliminary investigation, imidazo[1,2-a]pyridine based heterocycles having tert-alkyl amine and a biphenyl substituent
demonstrated promising results against some of the leukaemia, colon cancer, ovarian cancer as well as breast cancer cell
lines. The active compounds were also found to be non-toxic to several other cancer cell lines, warranting further structure
activity relationship (SAR) investigation. A systematic structural modifications and bioactivity evaluation against NC-160 cell
line resulted in the identification of 2-aryl-N-(2,4,4-trimethylpentan-2-yl)imidazo[1,2-a]pyrazin-3-amine scaffold with biphenyl,
benzo[¢][1,3]dioxole and 4-(trifluoromethyl)benzene as substituents at C-2 position showing anticancer activity.
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Introduction

Aromatic heterocyclic scaffolds exist in a wide range of
natural products and are being frequently used to probe and
understand various biologically significant pathways . In drug
discovery process, functionalized aromatic compounds are
dominated by their ability to make interactions with hydro-
phobic residues, polar amide/hydroxyl groups, and charged
moieties present in various biomacromolecules. Among such
aromatic scaffolds, biphenyl is a privileged structure which
comprises 4.3% of the marketed drugs and is presentin sev-
eral bioactive heterocycles?. Losartan and valsartan are the

top selling drugs which contain the bipheny! scaffold3. Bi-
phenyl containing molecules are also known to have poten-
tial anti-malarial, anti-microbial, anti-hypertensive as well as
anti-atherosclerotic activities®. Fesik et al. found that the bi-
phenyl containing heterocycles predominantly bind to a wide
range of proteins with high specificity23. Very recently, Yang
et al. designed novel oxime-biphenyl-diarylpyrimidines uti-
lizing a privileged scaffold inspired strategy having potential
to treat HIV-1°. Due to the flexible nature of the biphenyl
scaffold, it can be accommodated into a wide range of en-
zymelprotein pockets and show favorable interactions with
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the receptors. Honokiol (1), a natural product comprising a
biphenyl scaffold, extracted from the bark of Magnolia
officinalis exhibits antitumor activity against several cancer
cells including colorectal cancer, prostate cancer, leukaemia,
and melanoma (Fig. 1)6. Biphenyl skeleton is also observed
in several other cytotoxic natural products such as
eupomatilone-67 (2), allocolchicine® (3) and buflavine? (4).
MP5-F910 (5), the natural product combretastatin A4 (micro-
tubule targeting agent) inspired designed hit also showed
anticancer activity via mitotic arrest. Whereas, the nitro-viny!
biphenyl derivative (6) showed cytotoxicity in nanomolar
range against Hela and MCF-7 cell lines'?.

Hybridization of two different moieties that are biologi-
cally active could result in new scaffolds with improved
physiochemical as well as pharmacological properties. This
approach can easily provide novel scaffolds targeting sig-
nificant biological pathways. Fused imidazole based scaf-
fold is one of such important privileged structure which was
found in several marketed drugs such as Zolpidem (treat-
ment of insomnia), minodronic acid (treatment of osteoporo-
sis), soraprazan, alpedim (treatment of anxiety), zolmidine
etc.". Substituted fused imidazole 7 is protein-E (CENP) tar-
geting anticancer agent currently available in the market'2.

Similarly, compounds 8 and 9 are the imidazo[2,1-
b][1,3,4]thiadiazole analogues of anticancer drug levamisole
showing promising results'. Based upon the above-men-
tioned attributes of biphenyl and fused imidazoles, we
planned to directly link biphenyl scaffold with imidazole fused
pyridine/pyrazine and thiazole skeleton and evaluated their
potential against a panel of NCI-60 cancer cell lines.

Results and discussion

Greobke-Blackburn-Bienaymé (GBB) multicomponent
reaction is a one-pot protocol where an amidine, aldehyde
and isonitrile reacts together to generate diverse compounds
containing imidazole fused heterocycles'®. Following this
strategy we sought to design biphenyl linked fused
imidazopyridine, imidazopyrazine, and imidazothiazole based
heterocycles. Initially, a set of nine diverse biphenyl linked
fused imidazoles were synthesized (Fig. 2) via GBB reaction
which was carried out in acetonitrile using HCl as a catalyst
to generate the desired compounds in 50-90% vyields
(Scheme 1). All the products were purified through column
chromatography using 230-400 mesh silica gel and charac-
terized by NMR and HRMS analysis. The purity of these com-
pounds was determined by HPLC.
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Fig. 1. Design of biphenyl linked fused imidazoles.
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Cell Line
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Fig. 2. Heatmap of NCI-60 cell line screening for compounds 10-18.

The anticancer potential of the synthesized analogues
(10-18) was evaluated against NCI-60 cancer cell line panel'®.

The diverse cell line panel provide a unique platform to com-
pare tested compounds by their effect patterns and identify
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potential *hits’ for further drug discovery'®. The synthesized
library of compounds were screened against the NCI-60 cell
line panel at a single dose (10 uM). The output was pro-
cessed and reported as percentage (%) inhibition heatmap
(Fig. 2).

The compounds 10, 14 and 18, which are placed diago-
nally in Scheme 1 showed promising activities. Specifically,
the imidazo[1,2-a]pyridine-based compound 10 having tert-
butyl amine and a privileged biphenyl substituent demon-
strated substantial inhibition of leukaemia cell lines K-562
(71% inhibition) and SR (58% inhibition). Compound 10 was
also found to be active against colon cancer cell line HT29
(83% inhibition) as well as breast cancer cell line T-47D (69%
inhibition). The structurally similar analogue having tert-
octylamine substituent on the imidazo[1,2-a]pyrazine hetero-

@
N7 NH,

X=CH,N, S

cycle (14) was observed to be selectively toxic to the colon
cancer cell line HT29 (69% inhibition) and was also found to
be active against non-small cell lung cancer cell line H522
(62% inhibition). It was noteworthy to observe that the com-
pound 14 completely inhibited the growth of the ovarian can-
cer cell line OVCAR-4 at 10 uM concentration. Among the
initial small set of compounds, the biphenyl linked
imidazo[2,1-b]thiazole 18 having 2-morpholinoethyl amine
substituent was another active analogue showing potential
anticancer activity against leukemia CCRF-CEM, HL-60 as
well as non-small cell lung cancer cell line H522 with more
than 60% inhibition at the tested concentration. The three
active compounds as well as the other analogues were found
to be non-toxic to several other cell lines and also a clear
relationship between the substituents and the observed ac-
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Scheme 1. Adiverse set of biphenyl linked fused imidazole.

1240



Singh et al.: Design, synthesis, anti-cancer screening and structure activity relationship studies of biphenyl etc.

tivity was observed which demanded further structure acti-
vity relationship (SAR) investigation.

To increase the diversity of the synthesized library and to
further understand the SAR, dealkylation of the preliminary
‘hit’ (compound 14) with imidazo[1,2-a]pyrazine scaffold was
carried out to observe the effect of the free amino functional-
ity on the anticancer activity (Scheme 2). The dealkylation
reaction was executed in the presence of 1:1 mixture of
CF3COOH and CH,Cl, at room temperature to generate the
primary amine product 19 in 90% yield.

HN/i NH,
DO T 00
A=y 25°C, 10min N A=y

14 19

=z

Scheme 2. Dealkylation of HIT compound 14.

Complete loss of anticancer activity by compound 19
against all the cancer cell lines tested confirmed the impor-
tance of the fert-alkyl substituent in this scaffold. Further,
some more analogues of the compound 14 were synthesized
using similar GBB reaction condition (Scheme 3). The
imidazo[1,2-a]pyrazine with 2-octylamino substituents were
kept constant and various aldehydes were selected instead

of biphenyl-4-carboxaldehyde so as to understand the ap-
propriate structural requirements at C-2 position of the het-
erocycle for improved anticancer activity.

In particular, the compound 20 was synthesized to check
the importance of the biphenyl moiety in the ‘hit’ scaffold 14.
Further, the phenyl group was replaced with pyridyl function-
ality and both 3-pyridinecarboxaldehyde as well as 4-
pyridinecarboxaldehyde were selected to synthesize ana-
logues 21 and 22, respectively. It was important to observe
that the analogues 20, 21 as well as 22 did not show any
prominent inhibition of any of the cancer cell line tested (Fig.
3). The compound 23 with benzo[d][1,3]dioxole substitution
instead of a biphenyl group, inhibited 94% of the colon can-
cer cell line (HCT-116) at 10 uM whereas the structurally
related 3-hydroxy-4-methoxybenzene substituted compound
24 was found to bereft of any anticancer activity. Interest-
ingly, the 4-(trifluoromethyl)benzene substituted compound
25 showed complete inhibition (100% inhibition) of colon
cancer cell line (HCT-116), melanoma cell line (M14) as well
as renal cancer cell line (786-0). Further modification in this
series with 3-benzonitrile substituent resulted in compound
26 with complete loss of the anticancer activity. Overall, the
present investigation resulted in the discovery of 2-aryl-N-
(2,4,4-trimethylpentan-2-yl)imidazo[1,2-a]pyrazin-3-amine

N
X
N HCl in 1,4-Dioxane, E /L
N™ SN

(v kg, o
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= NC .
N”NH MW, 110, °C, 20 min )O(

2
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20-26
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Scheme 3. Further optimization of HIT compound 14.
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Fig. 3. Heatmap of NCI-60 cell line screening for compounds 19-26.
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scaffold with biphenyl, benzo[d][1,3]dioxole and 4-
(trifluoromethyl)benzene as prominent aryl substituents at
C-2 position showing prominent anticancer activity.

Conclusions

In this study, a set of compounds based on a privileged
molecular scaffold comprising biphenyl linked fused imida-
zoles were synthesized via GBB-MCR methodology and
screened through NCI-60 cancer cell line panel for their anti-
cancer activity. Preliminary screening (at a single dose of 10
uM), furnished compound 10 which showed substantial in-
hibition of leukaemia cell line (K-562, 71% inhibition; SR,
58% inhibition), colon cancer cell line (HT29, 83% inhibition)
as well as breast cancer cell line (T-47D, 69% inhibition).
The structurally similar analogue 14 completely inhibited the
growth of the ovarian cancer cell line OVCAR-4 at 10 uM
concentration. Further SAR investigation, confirmed the im-
portant role of C-3 fert-alkyl amino as well as biphenyl sub-
stituent at the C-2 position on the imidazo[1,2-a]pyrazine scaf-
fold. Compound 19 without tert-alkyl substituent as well as
the analogues synthesized by the replacement of biphenyl
group with phenyl (20), pyridyl (21, 22) and a few more sub-
stituted phenyl analogues (24, 26) were observed to be rela-
tively less active. Interestingly, the compound 23 with
benzo[d][1,3]dioxole substitution instead of a biphenyl group,
inhibited 94% of the colon cancer cell line (HCT-116) at 10
UM whereas the 4-(trifluoromethyl)benzene substituted com-
pound 25 showed complete inhibition of colon cancer cell
line (HCT-116), melanoma cell line (M14) as well as renal
cancer cell line (786-0).

Experimental

General procedure for the synthesis of compounds (10-
18) and (20-26): To a solution of 2-amidine (1.59 mmol) and
aldehyde (3.18 mmol) in anhydrous acetonitrile (5 mL), isoni-
trile (1.59 mmol) was added followed by the addition of 4 N
HCl/dioxane (5 uL) at room temperature. The reaction mix-
ture was then allowed to react under microwave irradiation
at 110°C for 20 min. After the completion of reaction (moni-
tored by TLC), the reaction mixture was cooled to room tem-
perature, solvent was evaporated under reduced pressure
and the crude mixture obtained was purified using flash col-
umn chromatography to yield the target compounds (10-18
and 20-26) in 50-90% vyield.

2-([1,1"-Biphenyl]-4-yl)-N-(2,4,4-trimethylpentan-2-
yl)imidazo[1,2-a]pyrazin-3-amine (14): Yield 70%; "H NMR
(500 MHz, CDCl,): 6 9.01 (d, J 1.3 Hz, 1H), 8.15 (dd, J 4.6,
1.4 Hz, 1H), 7.97-7.94 (m, 2H), 7.87 (d, J4.6 Hz, 1H), 7.74-
7.70 (m, 2H), 7.69-7.66 (m, 2H), 7.48-7.45 (m, 2H), 7.38-
7.35 (m, 1H), 1.61 (s, 2H), 1.05 (s, 9H), 1.00 (s, 6H); 13C
NMR (126 MHz, CDCl,): 6 143.5, 142.4,140.9, 140.7, 137.5,
133.5,129.0, 128.9,128.9, 127.6, 127.3,127.2,125.2, 116.6,
61.5, 57.2, 31.9, 31.9, 29.3; HRMS m/z: calculated for
CogHaiN4" [M+H]* 399.25432, found 399.25505.

2-(4-(Trifluoromethyl)phenyl)-N-(2,4,4-trimethylpentan-2-
yl)imidazo[1,2-a]pyrazin-3-amine (25): Yield 80%; 'H NMR
(598 MHz, DMSO-d): & 8.97 (d, J 1.3 Hz, 1H), 8.45 (dd, J
4.7,1.3 Hz, 1H), 8.37 (d, J 8.2 Hz, 2H), 7.89 (d, J 4.7 Hz,
1H),7.79(d, J8.3 Hz, 2H), 4.74 (s, 1H), 1.58 (s, 2H), 0.95 (s,
9H), 0.93 (s, 6H); 13C NMR (150 MHz, DMSO-j): & 142.9,
139.1,138.8, 136.8, 128.6, 128.5, 127.9, 127.6, 126.2, 125.8,
125.2,124.9,124.9,123.4,117.5,60.6,55.8, 31.5,31.2, 28.6;
HRMS m/z: calculated for CoqHygF3N,™ [M+H]* 391.21041,
found 391.21114.

Procedure for the synthesis of 2-([1,1"-biphenyl]-4-
ylimidazo[1,2-ajpyrazin-3-amine (19). To a solution of com-
pound 14 (100 mg, 0.25 mmol) in anhydrous CH,Cl, (1 mL),
trifluoroacetic acid (1 mL) was added and the final reaction
mixture was stirred at room temperaturefor 20 min. After the
completion of reaction, trifluoroacetic acid was neutralized
with saturated aqueous solution of NaHCO5 (50 ml) and
formed compound was extracted in dichloromethane. The
organic layer was collected, dried over anhydrous Na,SO,
and concentrated to obtain a crude residue, which was puri-
fied using column chromatography to obtain product 19 in
90% yield; "H NMR (500 MHz, DMSO-dg): 6 8.82 (d, J 1.4
Hz, 1H), 8.28 (dd, J 4.7, 1.4 Hz, 1H), 8.17-8.08 (m, 2H),
7.75 (ddt, J 8.2, 6.3, 1.5 Hz, 5H), 7.52—7.44 (m, 2H), 7.40-
7.31 (m, 1H), 5.89 (s, 2H); '3C NMR (126 MHz, DMSO-dy):
0 142.2, 139.8, 138.3, 134.1, 133.4, 129.0, 128.0, 127.8,
127.4,126.9, 126.7, 126.5, 115.1; HRMS m/z: calculated for
CygHysN," [M+H]* 287.12912, found 287.12808.

NCI-60 Screening methodology:

Growth inhibition experiments were performed at the US
National Cancer Institute (NCI) according to the method as
described by Boyd and Paull'%2.
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