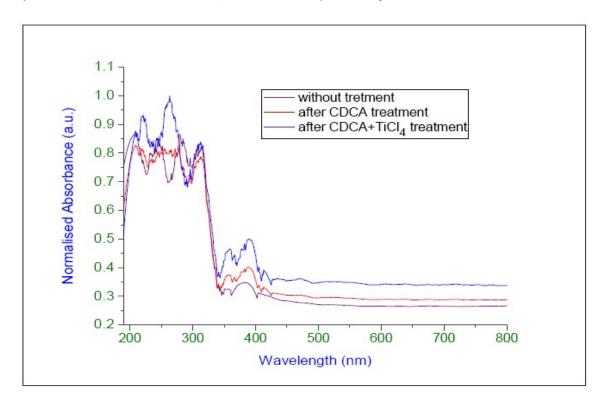


J. Indian Chem. Soc., Vol. 96, August 2019, pp. 1059-1065

Effect of surface treatment on photovoltaic properties of dye-sensitized solar cell based on natural dye quercetin


Giriraj Chayal^{a*}, Kharta Ram Patel^a, Mahesh Saran Roy^b, Manish Kumar^b, Narottam Prasad^b and Kirti Shitiz^b

^aDepartment of Physics, J. N. V. University, Jodhpur-342 005, Rajasthan, India

E-mail: chayal.physics@gmail.com

^bDefence Laboratory, Ratanada, Jodhpur-342 011, Rajasthan, India

Manuscript received online 29 November 2018, revised and accepted 26 July 2019

In this study, the effects of surface treatments of working anode with co-adsorbents such as chenodeoxycholic acid (CDCA) and $TiCl_4$ over efficiency and other photovoltaic parameters of dye-sensitized solar cell (DSSC) have been observed. The DSSC based on natural dye quercetin as sensitizer using quasi-solid polymeric electrolyte was fabricated. The improvement in power conversion efficiency (η) from 0.13% to 0.35% was well justified by increment in various photovoltaic parameters such as open circuit voltage (V_{oc}), short circuit density (I_{sc}) and fill factor (FF). The overall increment in power conversion efficiency after CDCA + $TiCl_4$ treatment was found to be around three times of the efficiency of untreated device. The use of polymeric electrolyte system consisting of I^-/I_3^- redox moieties imparts stability to the devices, which is essential for the commercial potential.

Keywords: Quercetin, nano crystalline TiO2, DSSC, quasi solid polymeric electrolyte.