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The classical Michaelis-Menten (MM) equation, represents a non-cooperative kinetic response of enzymes with either a single
or non-interacting multiple binding site(s). The mean catalytic rate of several monomeric enzymes, however, shows devia-
tions from this classical behavior. This effect, termed as dynamic cooperativity, is believed to be associated with molecular
mechanisms, stochastic reaction networks, that include enzymatic conformational fluctuations in product formation pathways.
In spite of the latter, however, the present understanding of dynamic cooperativity is confined to mean kinetic measures, ob-
tained from deterministic rate equations, which can not account for fluctuations. Here, we consider a stochastic reaction net-
work for a special class of monomeric enzyme, called mnemonical enzymes, which are known to exhibit both positive and
negative (dynamic) cooperativity. We model their kinetics using the chemical master equation (CME) to show how the emer-
gence of dynamic cooperativity, at the molecular level, is inextricably linked to the multiplicity of monomeric enzyme num-
bers, enzymatic conformational fluctuations and molecular memory. Our results show that dynamic cooperativity is a transient
phenomenon, which emerges due to temporal correlations between enzymatic turnovers, and vanishes as these correlations
decay and molecular memory fades.
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distributions.

1. Introduction

The classical Michaelis-Menten (MM) equation predicts
a hyperbolic dependence of the mean catalytic rate on sub-
strate concentration’. The latter represents a non-coopera-
tive kinetic response of enzymes with either a single or non-
interacting multiple binding site(s). Deviations from
hyperbolicity, displayed by several enzymes with multiple
binding sites, is then a signature of interactions between bind-
ing sites. From the perspective of classical kinetics, thus,
enzyme cooperativity is inherently linked to the multiplicity of
binding sites and interactions between them?2. As a corol-
lary, an enzyme with a single binding site, a monomeric en-
zyme, or an enzyme with non-interacting multiple binding
sites, studied in recent single-molecule experiments*, can
not show “cooperativity”.

While the classical description of enzyme cooperativity
is confined to substrate binding affinity at equilibrium, there
are several monomeric enzymes which show dynamic (or
kinetic) cooperativity23. In particular, several monomeric en-

zymes show positive cooperativity, in which the variation of
product formation rate with substrate concentration is more
steeper than is allowed by the MM equation. This results in a
speeding up of the MM kinetics. In the opposite case of nega-
tive cooperativity, the substrate variation of product forma-
tion rate is less steeper than the MM equation, resulting in a
slowing down of the MM kinetics. Deviations from the MM
equation, and hence non-hyperbolicity in monomeric en-
zymes, is believed to be associated with molecular mecha-
nisms, stochastic reaction networks, that allow enzymatic
conformational fluctuations in product formation path-
ways236-9,

The landmark experiment on the turnover kinetics of a
single tetrameric enzyme, B-galactosidase, has directly mea-
sured fluctuations in the catalytic rate to reveal that the MM
equation is not obeyed at the molecular level*9. B-Galac-
tosidase is an enzyme with four independent and identical
binding sites, which is known to follow the MM equation in
bulk amounts. At the single-molecule level, however, devia-
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tions from the MM equation are believed to be the result of
temporal fluctuations due to interconversions between mul-
titude of enzymatic conformational states before forming a
product through one of the several possible MM pathways.
These temporal fluctuations can now be measured and char-
acterized in terms of new statistical measures — distributions
of waiting times between consecutive product formation and
their moments*. The latter suggests that multiplicity of bind-
ing sites in a single fluctuating enzyme, even if non-interact-
ing, is necessary to yield deviations from the MM equation.
In the same vein, thus, the emergence of dynamic
cooperativity in monomeric enzymes can be traced to the
multiplicity of monomeric enzyme numbers and enzymatic
conformational fluctuations in product formation pathways.

While the mechanistic origin of dynamic cooperativity has
long been known, most previous studies have used deter-
ministic approach to understand dynamic cooperativity. These
studies have assumed, implicitly, that distinct conformational
states of enzymes and enzymes-substrates, at any time t,
can be written as their respective concentrations. The time
evolution of these concentrations follows the classical deter-
ministic mass action kinetics. While it is not clear how deter-
ministic rate equations can account for conformational fluc-
tuations in reaction pathways, deviations of the mean prod-
uct formation rate from the MM equation, a result of MM-like
but not MM mechanisms, is considered to be a signature of
dynamic cooperativity>6-9. Strictly speaking, however, the
number of enzymes in a given conformational state and the
lifetime of each conformational state are fluctuating quanti-
ties, the time evolution of which can only be described
probabilistically, and not deterministically. This naturally de-
mands a stochastic kinetic description, within which a ge-
neric link between intrinsic temporal fluctuations in the reac-
tion pathway and dynamic cooperativity can be established.

Here, we present a generalized theoretical formalism,
based on the chemical master equation (CME)'%!", to un-
derstand dynamic cooperativity at the molecular level. We
consider a special class of monomeric enzymes, called mne-
monic enzymes or enzymes with memory?, to show how the
emergence of dynamic cooperativity is inextricably linked to
the multiplicity of monomeric enzyme numbers, enzymatic
conformational fluctuations and molecular memory.
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2. Modeling dynamic cooperativity in monomeric en-
zymes

A class of monomeric enzymes, called mnemonic en-
zymes or enzymes with memory, are known to exhibit dy-
namic co-operativity?. Monomeric cooperativity is best de-
scribed by a simple mnemonical model that includes
interconversions between two conformational states of a free
enzyme, one less stable than the other, shown in Fig. 1. The
term mnemonic refers to a memory of the enzyme that “re-
members” for a while the conformation stabilized by the prod-
uct. Transient kinetic studies on wheat germ hexokinase, a
mnemonical enzyme, have provided evidence of both posi-
tive and negative co-operativity in these class of enzymes'2.
From a theoretical point of view, the latter makes them “model
enzyme systems” to investigate the link between conforma-
tional fluctuations and nature (positive and negative) of dy-
namic cooperativity in monomeric enzymes.
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Mnemonical enzyme model is a stochastic reaction network
that includes fluctuations between two conformational states
of afree enzyme before forming a product through single path-
way. Red circle and rhombus represent two conformational
states of a free enzyme, E, and E,. Blue square and green
rhombus represent enzyme-substrate ES and enzyme-prod-
uct E,P conformational states. The term mnemonic refers to a
kind of memory of the enzyme which remembers the confor-
mation stabilized by the product (rhombus).

Fig. 1.

We first outline the classical approach, based on deter-
ministic mass action kinetics, to show how the existing ki-
netic measure based on the mean product formation rate,
the steady-state enzymatic velocity, is used to discern posi-
tive and negative cooperativity. This is followed by a sto-
chastic approach, based on the chemical master equation
(CME), which provides new statistical measures of fluctua-
tions to quantify dynamic cooperativity at the molecular level.

A. Deterministic kinetics
The mnemonical model includes enzymes in two confor-
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mational states of a free enzyme, E, and E,, represented by
solid circle and rhombus in Fig. 1, respectively®. The sub-
strate binding yields a different conformational state ES, rep-
resented by solid square. The product binding, on the other
hand, stabilizes one of the two conformational states (repre-
sented by rhombus) of a free enzyme, E,P, which dissoci-
ates to form product P and free enzyme E,.

The rate equations for the mnemonical model are given
by
AEq] = —(ky + K4)[Eq] + K_4[ES] + kylE]
OByl = —(ky, + ky)[Eo] + k_3[ES] + k_4[E4] + ko[E4P]
O{ES] = k[Eq] + kplEo] + K'TESP] = (k_q + k_3 + K)[ES]
G{IESP] = KIE;S] - (K + ky)[EP],
where k, = kq[S], k;, = ks[S] and [E]y = [E4] + [E)] + [ES] +
[E,P] is the total enzyme concentration.

The steady-state enzymatic velocity is given by V =
ko[E-Plss, Where [E, Pl is the steady-state concentration of
enzyme-product complex. The steady-state approximation
for E4, E,, ES, E,P reduces the above set of coupled ordi-
nary differential equations into algebraic equtions®. The lat-
ter can be easily solved to yield the steady-state enzymatic
velocity V as

[Elp o +BIS]+ VISP
Vv 3[S] + €[S]?

where o, B, v, d and € are effective rate coefficients whose
explicit functional form is provided in Table 1.

(1)

Table 1. Explicit functional form of the effective kinetic coefficients

of eq. (1)
Coefficient Functional form
o (kg + k_g)(k_q + K_3)(K + ko) + kkol
B (kiky *+ 3k g)(k + K + ko) +
(K + ko)(kek_g + kak_1) + kkiky
Y kyka(k + K + ky)
8 kko(kiky + K3k g)
€ kkkoks

B. Stochastic kinetics

Before turning to the stochastic kinetic description of the
mnemonical enzyme model, a few points of distinction be-
tween deterministic and stochastic kinetics are worth high-

lighting. Deterministic mass action kinetics, valid for macro-
scopic amounts of reactants, describes the change of con-
centrations with time. This implicitly assumes that all reac-
tants, described collectively in terms of their concentrations,
combine and transform continuously in time to form prod-
ucts, such that both [P] and its rate of change d/{P] can be
defined.

In stochastic kinetics, however, molecular noise, origi-
nating from fluctuations of both quantum mechanical and
thermal origin, imparts stochasticity to each step of the reac-
tion mechanism. As a result, the number of reactants, com-
plexes and products change in discrete integer jumps, oc-
curring randomly in time, such that neither [P] nor its rate of
change d/{P] can be defined. Instead, the kinetics is described
by a series of waiting times 14, 1,, ... between two consecu-
tive product turnovers Tp= Tp - Tp_1, with turnover number, p
=1, 2, ..., where Tp is the turnover time for the p-th product
formation'3.

Table 2. Rate parameters for three kinds of dynamic cooperativity
in the mnemonic model

Cooperativity k K ki k4 ky k3 kg kg kyu
Positive 108 1 1 10% 10% 1000 10°° 10° 0.1
Negative 103 1 100 103 108 1 10% 102 102
Zero 10 1 2 02 1% 2 02 1 1

A schematic of the mnemonical model for a single en-
zyme forming products, one at a time, in discrete turnover
events is depicted in Fig. 2. The presence of molecular noise
ensures that both T and Tp are stochastic quantities with
probability distributions of waiting times, w(t p) and joint dis-
tributions of p-th and g-th waiting times, w(t P rq), which can
be obtained from the chemical master equation (CME) ap-
proach, described below. Kinetic information contained in
these distributions, for given p, ¢ =1, 2, ..., N and [S] is,
then, extracted in terms of their moments.

The CME accounts for inherent stochasticity of a chemi-
cal reaction in terms of the time evolution of the joint prob-
ability of the number of molecular species in the reaction
mechanism %1, The CME assumes occupancy time for each
kinetic state as exponentially distributed, and for a given
mechanism can be written as the gain (first line) and loss
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Fig. 2. A schematic of the mnemonical model for a single enzyme forming products, one at a time, in discrete turnover events. Here, T, = Tp -

Tp_1 is the waiting time between two consecutive product turnovers and Tp withp=1,2, ...

(second line) in probability due to the forward and backward
reactions:

OP(nt) =Dt (n—rs)P(n—ry t) -t S (n)P(n.t)

+ Y S (n+rg)Pn+rg t) -t S (n)P(n.t) 2

()
For the mnemonical model, P(n,{) is the joint probability dis-
tribution of the state vector n = (ng, ng,, ngs, N, p, N,) repre-
senting the number of enzymes, complexes and products in
various conformational states at time t, subject to the con-
straint ng, + ng, + ngg + ng,p = N, where Nis the total num-
ber of enzymes. Here, t3> (n) and t$~ (n) are the rates of the
o-th forward and backward reaction steps, which takes the
state n to the state n + r; and n - r, respectively. For the
mnemonical enzyme model, the number of reaction steps
and the corresponding n, r, t> (n) and t$™ (n) are summa-

rized in Table 3.
The waiting time distribution for the p-th product forma-

tion is related to the solution of the above CME through

W(Tp;N)Z—Z*atp(“*:p_1’t)|tztp ©)

where the summation is over the number of reactants and

Table 3. Reaction steps and the corresponding rg, t5” (n), t$~ (n)
for the mnemonical enzyme model

Step ro t5” (n) ts (n)
E,=E, (1,-1,0,0,0) k4n,:-1 k4‘n,_:2
E;=ES (-1,0,1,0,0) kanE1 k_4ngs
E,=ES 0,-1,1,0,0) kbnE2 k_3ngs
ES=EP 0,0,-1,1,0) kngg k'nEZP
E,p—P+E, (0,1,0,-1,1) kanzp 0
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is the p-th turnover time.

intermediates in the mnemonic model, described by the state
vector n* = (nE1, Mgy NS ”EQP) and n,=p- 1withp=1,2,
.., as the turnover numbers14.

A single mnemonical enzyme, at any time t, can occupy
only one of the four possible states, specified by the state
vector n*. This makes the catalytic turnovers a renewal pro-
cess, in which the waiting times between consecutive turn-
overs are independently and identically distributed. From this,
it follows that the identity w(t4) = w(rp) holds forallp=2, 3,
.., and specification of turnover index is not necessary. The
constraint of mutual exclusivity for N = 1 implies that Pg, =
P(1,0,0,0,0), Pg, = P(0,1,0,0,0), Pes=P(0,0,1,0,0),
PEP2 = P(0, 0, 0, 1, 0) for the first product formation. For a
single enzyme, thus, the CME decouples to a set of ordinary
differential equations (ODEs),

0P, = —(ky + k_g)PE, + k4Pgs * k4P,

0 Pg, = —(ky + ky)PE, + K 3Pes * k4P,

0 Pes = kP, + kyPe, + K'Pg,p—(k 1 + k3 + k)Pgg

0 Pg,p= kPes—(K + ko)Pg p
The constraint of mutual exclusivity of states and the renewal
nature of turnover statistics for N = 1, when used in eq. (3),

yields the following expression for the waiting time distribu-
tion:

w(t, N =1)=-0¢(Pg, + Pg,+ Pes + Pg,p)lt=< (4)
which using the above set of ODEs simplifies to

The Laplace transform of the above ODEs yields a set of
coupled algebraic equations which can be easily solved to
obtain an exact expression for the waiting time distribution,
W(s) = kyPgp (s) for N =117,

For multiple enzyme numbers, N > 1, the catalytic turn-
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overs form a non-renewal process, in which waiting times
between consecutive turnovers are neither independent nor
identically distributed'®. As a result, an exact analytical solu-
tion of the CME is difficult to obtain. However, the method of
superposition of renewal processes'® can be used to obtain
the first waiting time distribution for any N > 1, provided the
waiting time distribution for N =1, eq. (5), is known from the
solution of the ODEs

w(ty; N) = Nw(tq; N= 1)(J:W(T'1;N =1)dT'1) "1 e)

The analytical expression for w(t, N = 1), and thus w(t4, N),
is unwieldy. Therefore, we avoid presenting their functional
form, and directly compute their first two moments.

The first moment of w(t, N = 1) yields the mean waiting

time for a single enzyme,
o+ B[S] + y[SP
(W)= . (7)
O[S] + €[S]

which exactly recovers the inverse steady-state enzymatic
velocity, [E]y/V. The variance of the distribution, r = (1) -
()2, provides a statistical measure of intrinsic temporal fluc-

2

T

(%"

Another statistical measure of intrinsic temporal fluctua-
tions that can be derived from w(t pT ) is the correlation, Cq
= (Srpérp,,q), between a waiting time, Tos and another, T

q turnovers apart, where Srp =Ty (rp>, p=12,...

(&)

tuations, called the randomness parameter, r =

ptqr
Anon-

Mean waiting time

Randomness parameter

zero value of Cq indicates that enzymatic turnovers are tem-
porally correlated, implying that the waiting time duration of
first turnover influences the waiting time duration of subse-
quent turnovers. This “molecular memory” effect implies that
sequences of waiting times shorter or longer than the mean
are more probable than sequences with uniformly distrib-
uted waiting times'314,

To obtain w(t r , We carry out exact stochastic simula-
tions of the CME& 16, For this we generate typically 10° sto-
chastic trajectories of the mnemonic enzyme model for rate
parameters given in Table 2.

3. Results

The moments of w(t ) and W(T T ) provide kinetic mea-
sures of means and quctuatlons WhICh we describe below.

A. Kinetic measures of means

Classical limit: Dynamic cooperativity, in the classical
sense, is described as deviation of the steady-state enzy-
matic velocity V/[E], from the MM equation. This, best repre-
sented in terms of the double reciprocal plot of [E]y/V versus
1/[S], the Lineweaver-Burk plot, is shown in the left panel of
Fig. 3. In the latter, the linear dependence of [E]y/V on 1/[S]
is a signature of zero-cooperativity, arising from the
hyperbolicity of the MM equation. A speeding up or slowing
down of the kinetics with respect to the MM equation, shown
by red and blue curves respectively, thus, indicates positive
or negative (dynamic) cooperativity.

Waiting time correlations

GD [ i 0 0'2
e,
& HN=1, [S1=100
1Y O Drecasdargsdensssanis
=
(=]
20
' 02 10 20
0 50 100 -4 -1 2 5
10181 Log, 8] Lag(@

Fig. 3. Single monomeric enzyme: variation of the kinetic measures of mean — the mean waiting time (t) for a single enzyme and the inverse
steady-state velocity [E]y/V for macroscopic amounts of enzymes — as a function of substrate concentration is shown in the left panel.

Variation of the randomness parameter r with [S], and waiting time correlations Cq with turnoverlagq=1, 2, ...

right panels.

is shown in the middle and
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Single enzyme: At the single enzyme level, the substrate
variation of the mean waiting time (t) has the same func-
tional form as [E]y/V. The variation of (t) versus 1/[S] and
[E]y/V versus 1/[S], shown as a combined plot in the left panel
of Fig. 3 for common rate parameters listed in Table 2, is
thus identical. This shows that a single monomeric enzyme
shows dynamic cooperativity in the same way as macroscopic
amounts of enzymes. However, since “cooperativity” is a
collective phenomenon, requiring multiplicity of enzyme num-
bers or binding sites, indicates that the kinetic measures of
means — the mean waiting time at the single enzyme level or
steady-state enzymatic velocity for macroscopic amounts of
enzymes — are not sufficient to quantify dynamic cooperativity.

B. Kinetic measures of fluctuations

2
(o}

The randomness parameter, r = ﬁ , and the correla-
T

tion, C, = (87487,), between the waiting times of first and g-
th turnovers, with g = 1, 2, 3, ... lags, provide new kinetic
measures of intrinsic temporal fluctuations that have no clas-
sical analog. We compute these measures for single and
multiple enzyme(s) for rate parameter conditions, Table 2,
that yield (i) zero, (i) negative and (iii) positive (dynamic)
cooperativity for the mean waiting time, the left panel of Fig.
3.

Single monomeric enzyme: The magnitude of r is linked
to mechanism topologies'®. For mechanisms with linear to-
pologies, in which the terminal step is irreversible, the ran-
domness parameter is always less than one, r< 1. For mecha-
nisms with branched topologies, the rate parameter condi-
tions that favor dynamic disorder always yield r > 1. The ab-
sence of dynamic disorder in mechanisms with branched
topologies, implies r < 1.

The mnemonical enzyme model is a stochastic reaction
network in which fluctuations between two conformational
states of a free enzyme connects two linear MM pathways.
This yields a molecular mechanism with branched topology.
The magnitude of r for rate parameter conditions in Table 2
is depicted in the middle panel of Fig. 3. (i) For zero
cooperativity, the rate parameters for two linear MM path-
ways and the rate of interconversions between two confor-
mational states are symmetrical. This yields an effective lin-
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ear MM pathway with r < 1. This is the condition for zero
cooperativity (green line) in a network with branched topol-
ogy'8. (i) For negative cooperativity, the substrate binding
step for one of the two possible MM pathways is rate limiting
at lower [S], yielding a minimum for r < 1. With the increase
in [S], rincreases gradually while remaining less than unity,
until [S] attains a value at which the rate parameters of the
mnemonical model become symmetrical. This corresponds
to condition (i) of zero-cooperativity, which results in a sec-
ond minimum for r < 1 in higher [S] range. Thus, negative
cooperativity (blue line) in the mnemonical enzyme network
is signaled by r < 1. (iii) For positive cooperativity, the com-
petition between the rates of conformational fluctuations and
substrate binding yields r > 1 as long as both the substrate
binding steps are rate limiting. This is the condition for dy-
namic disorder, r > 1, in the mnemonical enzyme network
with positive cooperativity (red line). In all three cases, as
soon as product formation becomes the rate limiting step,
r=1is attained.

The right panel of Fig. 3 shows that waiting time correla-
tions, Cq, irrespective of the type of cooperativity, are identi-
cally zero for all [S]. This follows from the renewal nature of
the turnover statistics for a single enzyme. The correlation
between first and g-th waiting times, q = 1, 2, ... turnovers
apart, thus, provides a new statistical measure of dynamic
cooperativity. Since Cq =0 for N = 1, the waiting time corre-
lations capture the essential idea that a single enzyme can
not show dynamic cooperativity.

At the single molecule level, thus, deviations of the mean
waiting time from the MM equation, is merely a reflection of
distinct product formation pathways, as captured by r, re-
quiring different mean waiting time for product formation.

Multiple monomeric enzymes: For N> 1, the non-renewal
nature of turnover statistics yields Cq # 0, implying that en-
zymatic turnovers are correlated in time. A finite value of Cq
indicates that the time duration of first turnover influences
the time duration of subsequent turnovers. This yield a “mo-
lecular memory” effectin which positive correlations between
waiting times suggest that a long (or short) first waiting time
(compared to its mean value) is more likely to be followed by
a long (or short) second waiting time. Similarly, negative cor-
relations between waiting times imply that a long (or short)
first waiting time is more likely to be followed by a short (or
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Waiting time correlations

Waiting time correlations
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Fig. 4. Left panels show variation of the randomness parameter r versus [S] for N = 100, 500. Red, blue and green symbols represent the
substrate concentrations for which waiting time correlations C, for N = 100 (middle panels) and N = 500 (right panels) have been
evaluated. Rate parameter values for top and bottom panels are given in the first and second column of Table 2. For the mnemonic
enzyme model, the simultaneous observation of r>1and C, > 0 is a signature of positive cooperativity. Similarly, r <1 and C, < 0 implies

negative cooperativity.

long) second waiting time. The critical turnover number g*
beyond which temporal correlations decay and molecular
memory fades demarcates a transient regime q << g* from a
steady state regime ¢ >> g*20. In the transient regime Cq #0
and molecular memory persists. In the steady-state regime,
in contrast, Cq = 0 with no molecular memory.

Cq # 0 ensures that the multiplicity of enzyme numbers
is necessary to yield a form of “cooperativity” in which prod-
uct turnovers are not independent, as in classical determin-
istic kinetics, but are correlated in time. To understand the
link between molecular memory and dynamic cooperativity,
Fig. 4 presents a combined plot of r versus [S] (left panel)
and Cq versus g (right panels). Interestingly, the rate param-
eters for positive cooperativity Table 2, for which the pres-
ence of dynamic disorder yields r > 1, also yield Cq >0in
same substrate range. This implies that positive cooperativity
in mnemonical enzyme model is related to the simultaneous
observation of r> 1 (dynamic disorder) and Cq > 0 (positive
memory). Similarly, the bottom panel of Fig. 4 shows that
negative cooperativity in mnemonical enzyme model is re-
lated to the simultaneous observation of r < 1 (absence of
dynamic disorder) and Cq < 0 (negative memory).

4, Conclusion

In this work, we use the CME description to present a
stochastic reformulation of a mnemonical enzyme network,
which is known to exhibit dynamic cooperativity, both posi-
tive and negative, albeit in a deterministic sense. The inclu-
sion of stochasticity in the mnemonical enzyme model al-
lows us to introduce two statistical measures of intrinsic tem-
poral fluctuations — the randomness parameter r and waiting
time correlations between enzymatic turnovers Cq —to quan-
tify dynamic cooperativity at the molecular level. While the
magnitude of r signals a branched or linear product forma-
tion pathway, with or without dynamic disorder, the sign of
Cq indicates the nature of molecular memory in the transient
regime.

Our analysis shows that a single mnemonical enzyme
exhibits dynamic cooperativity in the same way as a macro-
scopic amounts of enzymes. However, since “cooperativity”
necessarily requires multiplicity of enzyme numbers or bind-
ing sites, implies that kinetic measures — the mean waiting
time for a single monomeric enzyme level or steady-state
enzymatic velocity for macroscopic amounts of monomeric
enzymes — are not sufficient to quantify dynamic cooperativity.
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This motivates us to identify Cq, a statistical measure of
correlations between enzymatic turnovers, as a new kinetic
measure to quantify the nature and extent of dynamic
cooperativity. Cq =0forN=1and Cq # 0 for N> 1 ensures
that the multiplicity of enzyme numbers is necessary to yield
a form of “cooperativity” in which product turnovers are tem-
porally correlated in the transient regime. For the mnemoni-
cal enzyme model, the relation between r and Cq suggests
that Cq > (0 is a signature of positive cooperativity in which a
long (or short) first waiting time is more likely to be followed
by a long (or short) second waiting time. Similarly, C, <O is a
signature of negative cooperativity in which a long (or short)
first waiting time is more likely to be followed by a short (or
long) second waiting time.

Dynamic cooperativity, at the molecular level, thus,
emerges as a transient phenomenon, the duration of which
is determined by the time required for temporal correlations
between enzymatic turnovers to vanish and molecular
memory to fade.
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