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Inseparability of Coulomb interactions into generic coordinates calls hues of dichotomy in solving Schrédinger equation of
multi-electron quantum systems. Especially, Hydrogenic systems have both bound and scattered (ionized) states to achieve
completeness relation of respective Hilbert space. Consequently, variational and perturbation calculations experience non-
trivial Coulomb (exchange) integrals. Albeit, Born-Oppenheimer approximation simplifies the hamiltonian for electrons of at-
oms under frozen nucleii, the electrostatic Green function expansion of interactions becomes inevitable prospect. Each pole
of Green function expansion is composed of operators of two electrons as a composite of source and test charges. Non-rela-
tivistic quantum equations of the source and the test electrons are solved in Whittaker-M function and Associated Laguerre
polynomial forms respectively. It furnishes all operators of the above mentioned expansions a template of lower and upper
incomplete Gamma functions with integer arguments for interior integrals and finally terminable, exact, finitely summed and
easily calculable Lauricella functions in exterior integrals in analytical treatment of Coulomb correlations. However, exchange
of coordinates among test and source electrons leading to identical integrals ensures symmetric nature of Green function ex-
pansion. As a benchmark, we have calculated ground state energies of He and isoelectronic ions through perturbation calcu-
lations of first, second and higher orders with bound states only. It clearly shows that percentage contribution upto second
order perturbation calculation of bound excited states increases with increasing nuclear charge (atomic number, Z) of iso-
electronic series. The theoretical development also ensures unquestionable future for analytical treatment of size-extended
quantum systems.

Keywords: Helium isoelectronic ions, Coulomb interactions, Green's function expansion, Hydrogenic bound states, first and

second order perturbation calculations.

1. Introduction

Interaction among multi-charges of quantum systems has
become a fathomless challenge in twenty first century. Di-
alectical proposals from various schools of state-of-art have
come to the fore of science with an appeal for unification!~S.
In this arena, both the hydrogenic and the oscillator systems
have vastly been employed to study complex phenomena’8.
In the year of 1929, first landmark contribution of estimating
the ground state energy of He atom was made by Hylleraas'.
He intuitively proposed a correlated wavefunction, composed
of six parameters giving an excellent variational result. How-
ever, it was insignificant to satisfy the cusps condition for
three or more particles at coalescence region®. In this re-
gard, Bartlett* and others suggested inclusion of logarithmic
form in wavefunction which was further deployed by Pekeris®.

He numerically calculated the ground-state energy of He
atom. Scherr et al. and Silverman elegantly performed per-
turbation calculations of Z-1 expansion upto ESB) computa-
tionally by utilizing wavefunction of Hylleraas23:1. Later,
Bhattacharyya et al. conferred an analytical approach with
3-parameter based correlated wavefunction for examining
He atom™. Nakatsuji and cowokers’ monumental work of
computation on He isoelectronic series by Free ICI (lterative
complement interaction) method with scaled Schrddinger
equation (SSE) encountered difficulties for large atoms and
molecules (number of electrons, N >2)'2. Later on, Nakatsuii
et al. developed ICI LSE (Local Schrodinger equation) method
for calculation of systems upto N = 5, algorithm of which is
under construction for high performance computation'3. Other
efforts like inclusion of Kinoshita-type expansion, quantum
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Monte-Carlo calculations, many-body perturbation theory
(MBPT), Hartree Fock Self Consistent Field and etc. impro-
vised moderately accurate results of two-electron systems
with high computational cost'=17. But all these methodolo-
gies extemporize implicit accountability of Coulomb interac-
tion for He isoelectronic ions. Recently, Hazra et al. repre-
sented an elite formalism for Coulomb interactions of 2-D
and 3-D N-e harmonically confined quantum dots that paved
a way to elucidate Hydrogenic sytems'8-22. In this context,
we have constructed exact theoretical development for ge-
neric coordinates of individual particles to solve Schrodinger
equation of He and its iso-electronic species using Green
function expansion that circumvents all computation cost and
assumptions. We have achieved exact first order energy cor-
rection (1.25 a.u.) of He-atom and second order perturbation
calculation with both singly excited (1sn,s) and doubly ex-
cited (n4Sn,s) bound states analytically, discussed in detail
(Section 2 and Section 3).

2. Novel theoretical development
Hamiltonian of a H-like N-e systems can be written as:-

M ‘3 2mg dnepe 2#’

4negelR - Tl

where Z, M, m,,  are the charge of nucleus, mass of nucleus,
mass of electron and dielectric constant of medium respec-
tively. Born-Oppenheimer approximation reduces the above
Hamiltonian to:
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Each interaction term (H’) can be opened by free electro-
static Green’s function multlpole expansion?3.
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The unperturbed hamiltonian HO(r, 6, ¢) = E%(r, 6, o) for
i-th particle of H-like system (spherical polar coordinates)
can be represented as:

11 (0 ,0) L?| z L0
{—E{r (Er 5)—?}—7}&&9,@—5 &(r.6,0) (4)

The solution with spherical harmonics, £9(r, ©, ) = u(nym
(6,0),m=0, +1, +2,.. where u(r) is a radial part and Y, (6,

20+1)(I—=|m|)! )
(2 |mit P,'m| (cos 6)e'™® is the angular part.

4x(l—|m))!

The radial Schrddinger equation can be represented as:
b2

{,z(irzi]_MA_a_}u(r,:o ®)
drdr r2 r 4

where, 0.2 = -8E° for bound states £9< 0, u() —> 0 as r
— o0, U( ) is finite at r=0and and B’ = 2Z. z = aur simplifies
the above equation, with u(r) = U(z):

2
{:Z_Z+21]+E_@_l}u<z):o ®

zZ dz
M(z)+ {E ) 1}M(z) =0 (7)

1
where M(z) is Whittaker-M function and B = 2Z |~ 3E0 -

Comparing with self-adjoint differential equation of Whittaker-
M function?* yields the energy and the corresponding bound-

z? _
state as F0= - o7 and EX(r, 6, 9) = Nar)™ M (an)Y,"

(6, ®) respectively where n is an integer,

3 (n+I) 0 )
N= \/a (2n(n—l—1)!(2/+1)!2}’ o= K =nand/+1/2=

v. Naively, [eq. (7)] can be also compared with Associated
Laguerre differential equation giving rise to eigenfunction,

—ar

&%r,6,0)= Be 2 (o)L (oY (O, 0), where . 1= -1,
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n is principal quantum number and % = /a3(wj .
2n(n+1)!

The higher order perturbation calculations can be expressed
25.
as<:

EQ
e
Ep= EE + i,% + ) EOqEqO
G N A +..(8)
G = I G A S T 3
EP-E{

where first term is unperturbed energy of the system, sec-
ond term is the first order, third term is the second order
energy corrections and so on.

The Ground-state perturbation calculations (P=0,

(1)

Pq integral. This integral re-

EP=E0=Eg() ;leed to evaluate H
1

duces to H P when P = q for first order correction. For, /=0
amd m=0, integral can be written as:
HO —( 2R, 6, ®)p|-H=(R, 0, ®)
Po=| ER.©. Plp | HER 0, @) 9)

where E(R, 0, ®) = Hfiﬁo(ff,@i,d)i) . Solving radial part

for ground-state He iso-electronic ions for individual i-th, j-th
spaces as follows where, for bra-space coordinates o4 = oty
= 2Z and for ket-space we can have same or different o
subject to singly excited or doubly excited states:

/=<a<oc1r,->a<oc2r,-> .

(10)

>
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Factorizing the integral, for each r; considering integral over
rjand consequent integration over r;:

I
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I

I;and I, can be written using normalized associated Laguerre

’

wavefunction, letting Zj= o, W =% and employing [egs.
2

(18)-(19)] shapes the integral to:
Interior enclosure of source electron:
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Exterior enclosure of source electron:
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ing back in [eq. (11)] and taking &(oi4r;) and &(ayr) in
Whittaker-M function and o.4r; = z;, the integral become (/=/,
and my=m,):
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Standard Integral 126
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where Re(¢+ M) >0, Re (b %a1 t—ay)>0and M=y, +v,

Standard Integral 1127:

1
2

1
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where Re(c) > 0, Re(b) > 0
Associated Laguerre polynomial?

k
(n+k)! m
o e > (19

Lower and upper incomplete gamma function?*:

a—1,s a 1,8
v(a,x) J;)e gt = (a—1) (1 e XZ);'], a,x) ‘roe et (a— 1)( X—] (19)
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where, Re(a) >0
F, to F; relation?®,

Fa (4 s0) =2 OO 52140 20)

Chu-Vandermonde identity??, satisfying conditions: Re(c’)> and o’ =1 :

£k, ) L=k

? ( ) (©) (21)

Solving /g using the standard integral [eq. (16)] result in 5 i & (1124 2) pig (=) p(=12)g

following finite double summed form, where b=0, a;=1, a,= p0qm0  (211+2)p(25+2)4plq!
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=/1+I2+2,Q=S:
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And similarly for I, exploiting the standard integral (eq. (16))
we obtain following simplified form:
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[egs. (14), (15)] for /; = I, = 0 we get:
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where . Adding [egs. (25), (26)] gives the

0‘1
exact value of the integral [eq. (10)]. Is , Isb andl , can also
be evaluated using [eq. (17)] yielding same result

2.1. First order energy correction E ;)

First order energy correction of the ground-state with
(1s(1)1s(2)) for isoelectronic Helium ions, the integral in [eq.
(10)] attains following diagonal form (ot = o’y = o’y = 22):

/=<aavnaavn;1

>

i(a1fi)§(061fj)> (27)

I and Ig can be recast as single summed form by employing

= 22: k+1 k+2)( ) {F 2)

(28)
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L (8+3) p(=17) p(=(s+p+1) }
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Giving the following values / = /¢ + Ig:
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32 32
3,
T16
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2.2. Second order energy correction E (2,

Second order energy correction of ground-states for He-
lium iso-electronic ions can be represented as:

4 Iy

oy D AN
" TSED D & ED_D

where E(g)and EQ are energies of the ground and ¢-th ex-
cited bound states respectively of He isoelectronic ions re-
spectively.

1 =<f“;(0°1fi)§(0t1fj)ri

>

i(dﬁfi)i((x'zfj)>

I, =<a<a'1r,)a<a'zr,-> ri

>

(32)
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Above two integrals can be evaluated similarly as [Eq.(10)]
giving end results as [egs. (25), (26)] and it can then be sub-
stituted in [eq. (31)] yielding second order energy.

3. Results and discussion

We have evaluated the ground-state energies of Helium
isoelectronic ions (H™, He, Li*, Be2*, B3*, C4*, N°* Of* F7*
and Ne®*) with exact estimation of their first order (E(g))) and
second order (E%)) energy correction terms using Green'’s
function expansion of Coulomb interactions for bound states
with / =0, m = 0 and n =1-100. The unperturbed wave-

780

functions of bound states are in the parameter free form of
generic coordinates of individual particles. Table 1 summa-
ries the values of E(EJ) , E%) and ground-state energies (E)
for different Z (Hydride ion to Ne8*) [Fig. 1(b)]. The obtained
ground-state energies are compared with the experimental
results30. We have also estimated both the % contributions
of singly and doubly excited bound states to second order
energy correction of Helium atom and residual contributions
due to ionized states, relativistic effect and nonadiabatic tran-

sition, discussed in detail in next section.

3.1. Analysis of E(') contribution

We have completely determined exact values of first or-
der energy correction for different Z [eq. (30)] catalogued in
Table | which matches to literature®.

3.2. Analysis of E(?) contribution

Table 1 and Fig. 1(a) show the quantitative contribution
of singly and doubly excited bound states (/ =0 and m = 0)
to second order perturbation energy (E%)). As n increases
E ((2)) value decreases and reaches zero very sharply within n
=100. Singly excited bound states show more quantitative
participation than doubly excited bound states. From the Table
1, it is clearly seen that second order correction (E(g)) is
independent of increasing Z unlike E (2)) but the total %-differ-
ence to that of experimental value decreases with increas-
ing Z. For Helium atom (Z = 2), the stepping stone to enter
into the world of many-body physics, our analytical result
shows only 3.25% difference to that of the experimental value.
It arises as continuum hydrogenic states are not accounted
that significantly contribute to second order energy correc-
tion3. Complete basis set for hydrogenic system comprises
of both bound and continuum states for evaluation of the
exact ground-state energy®!. Scherr conjectured that bound
states (/ = 0 and m = 0) contribute 40%, singly ionized and
doubly ionized states contribute 40.8% and 10.8% respec-
tively to second order correction without thorough calcula-
tions®. Although the order of accuracy achieved by Nakatsuji
et al. and other computational groups deserves very high
esteem, we have chosen inclusion of distinctive phenomena
like bound and scattered states, relativistic quantum effect
and non-adiabatic transitions analytically® 213, In this pa-
per, incorporation of bound excited states only for second
order perturbation correction exhibits ~3.25% difference of
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residual contribution for remaining phenomena. Our analyti-  The formalism corroborating exact two-center integrals also
cal results being in agreement with Scherr’s results can be  enlightens the way for multi-configuration variational and per-

easily applicable to size extended systems: turbation calculations?!.
Predicted total E@ contribution Symmetry of Green function expansion:
Eexp_|:E00) n Eéﬂ = —0.15378 Reciprocity of Green’s function is very significant prop-
erty s itis a two variable function (73, 7, ) . Epistemology of
E (()2) contribution of bound states = 0059351016 Bhaskara-ll and Kerala School of Mathematics on diﬁereq—
(our analytical result) tial geometry and calculus respectively, greatly helps us vi-
-0.0593510 sualizing the intricate symmetry details of Green function

Percentage contribution = ‘ 015378 ‘X 100~39% expansion of Coulomb interaction without going through ex-

Table 1. Comparison of ground-state energies (Eg) of H™ to Ne®* in a.u. obtained by our analytical treatment with experimental values®C.

) ()

Contribution of first order E* 'and second order E'’ ) energy correction to ground-state energies for different Z is shown. Values of singly

0 0
|E g_E exp
and double excited bound states of E(%) for Helium is also given. (Residual contribution (R;)% = 3 %100
exp
© o) ® | R% |
Z Ep (au) E, (auw) E, (au) Eg (a.u.) Eexp (a.u.)

1(H) 2.0 0.625 E,®?Total: -0.059351016762180 -0.434351016762179 |-0.52776 17.69

Singly excited bound states Doubly excited bound states

n=1s n=2s

ny=2s -0.021291525326358 n,=2s -0.000160569721443

n=1s n,=3s

n,=3s -0.004347974700000 n,=3s -0.000001357868314

ny=1s ny=4s

ny=4s -0.001625895879581 n,=4s  -0.000000080814105

n=1s n,=5s

n,=5s -0.000788420649888 n,=5s  -0.000000010332783

n=1s n,=6s

n,=6s -0.000443152057806 n,=6s -0.000000002023212
2 (He) -4.0 1.25 n=1s n=7s -2.809351016762170 -2.90378 3.25

n,=7s -0.000274240288945 n,=7s -0.000000000521487

n=1s n,=8s

n,=8s -0.000181658666483 n,=8s -0.000000000163018

n=1s n,=9s

n,=9s -0.000126604502112 n,=9s -0.000000000058806

ny=1s n;=10s

n,=10s -0.000091787934680 n,=10s  -0.000000000023696

ny=1s n;=100s

n,=100s -0.0000000896 n,=100s  -0.000000000000

E“Total: -0.059351016762180

3 (L") 9.0 1.875 Eo?Total: -0.059351016762180 -7.184351016762 -7.28041 131
4 (Be™) -16.0 25 E,?Total: -0.059351016762180 -13.559351016762  |-13.65744 0.7
5(B%) -25.00 3.125 Ey®Total: -0.059351016762180 -21.934351016762  |-22.03603 0.46
6(C") -36.0 3.75 Eo?Total: -0.059351016762180 -32.309351016762  |-32.41733 0.33
7 (N°) -49.0 4.375 Eo?Total: -0.059351016762180 -44.684351016762 -44.80351 0.26
8 (0™ -64.0 5.0 Eo?Total: -0.059351016762180 -59.059351016762 -59.19580 0.23
9(F™) -81.00 5.625 Eo®Total: -0.059351016762180 -75.434351016762 -75.59658 0.21
10 (Ne”) -100.0 6.25 Eo?Total: -0.059351016762180 -93.809351016762  |-94.00835 0.21
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(a)

I fam}
&
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Fig. 1. (a) Contribution of singly (1s(1)ns(2)) and doubly excited bound states (n1s(1)n2s(2)) to second order energy correction (E%)) of helium
atom (Z=2, n=1 to 5) and (b) Ground-State energies (Eg) vs Atomic number(Z).

plicit mathematics [Fig. 1(a)]*%33. A cursory glance on bisec-
tion of E*,'-plot along principal quantum numbers unambigu-
ously exhibits mirror image symmetry. It signifies that ex-
change of two-electron coordinates leads to the same con-
tribution [Fig. 1(a)].

Limitations of multipole expansion in generic co-ordinates:

In our first attempt to solve H-like systems we treated
coulomb interactions in terms of integrals of multipole ex-
pansions through generic co-ordinates of electrons (order of
the pole, "p’). Correlation integrals of all poles (P > 0) were
also chartered as cumulative products of coulomb-, dipole-
and inverse-square-type integrals in finite summed Lauricella
functions without coming across the question of divergence
alike recent analytical treatment to coulomb interaction of
oscillator under magnetic field?2-22. We obtained ground-state
energy of He ~-2.5 a.u. that includes monopole term (1.5
a.u.) and dipole term contributions (~0.0 a.u.) for all bound
states (I = 0, m = 0). We found no further increment in the
result despite of enlarging basis-span. The reason for this
failure is that the surface integrals of both Dirichlet and
Neumann forms of Coulomb interaction in Green’s function
expansion decay slowly for Hydrogenic systems and there-
fore multipole expansion does not merges to the potential
form of generic coordinates®2. On the contrary, as Gaussian
form of orbitals decays very fast, both the surface integrals
of Dirichlet and Neumann Green function expansions exhibit

782

sharp falls that virtually leads to well known multi-pole ex-
pansion in generic co-ordinates of electrons?2. In that re-
spect, Green’s function can only be used as potential pre-
cursor to treat Coulomb interactions of generic coordinates.

4, Conclusion

We have represented a novel theoretical development to
estimate the ground-state energies of He-isoelectronic ions
by employing free electrostatic Green’s function expansion
for Coulomb interactions upto second order perturbation cal-
culations for all bound states. This analytical route embraces
exact evaluation of the first (E(EJ)) and the second order
(E%)) energy correction terms and eliminates the paradox
that occurs due to different scaling factors (o) for excited
states in higher order perturbation and variational calcula-
tions. Moreover, the unperturbed wavefunction is free from
correlated form and it incorporates generic coordinates of
individual particles unlike the wavefunctions adapted by pre-
vious theories a century ago. We have achieved a finest over-
lap of our analytical result with the experimental values. Sub-
sequently, the difference in values of the two appears be-
cause contributions from ionized states are not taken into
account. At this juncture, detail and exact investigation of
the ground-states with above said due contributions, non-
adiabatic transitions and relativistic effect has become in-
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exorable fate but it goes beyond the scope of the article.
However, this methodology is not only restricted to small
systems but also applicable to size extended various quan-
tum systems as it preserves reciprocity and boundary condi-
tions (Dirichlet and Neumann) for Green’s function expan-
sion of Coulomb interactions.
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