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Toxicity profiling of specialty chemicals is essential, since several studies have reported their role in acute/chronic health ef-
fects. It is voluminous to perform a battery of toxicity experiments on available specialty chemicals. In this study, we employed
robust QSAR approaches to predict the carcinogenicity and mutagenicity potential for a dataset of 131 specialty chemicals
utilizing machine learning tools. Four predictive approaches were selected to benchmark the reliability and applicability of the
suitable genotoxicity QSAR (Geno-QSAR) models each for carcinogenicity (CAESAR, ISS, ANTARES, and ISSCAN) and mu-
tagenicity (CAESAR, SARpy, ISS, and KNN). Five-fold statistical evaluation was performed using an external dataset of more
than 2000 compounds with their known genotoxicity potential. KNN/Read across and IRFMN/ANTARES resulted as the best
model for mutagenicity and carcinogenicity, respectively. Results obtained from the selected predictive models are narrowed
down to the potentially safe compounds and are cross-validated with the experimental details compiled through the literature
mining. Geno-QSAR approaches demonstrated in this investigation have widespread applicability for safe compound
prioritization and toxicity prediction of a large number of chemicals in a lucid way.
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1. Introduction

Specialty chemicals are low volume and high-value com-
pounds, commonly used in various sub-segments on the
basis of end-use and applications such as agrochemicals,
colorants, construction chemicals, flavors and fragrances,
paints and coatings, personal care, polymer additives, sur-
factants, chemicals, and water treatment chemicals. These
chemicals are widely utilized by all the age groups from a
newborn to an elder in most of the products available in the
market today’. A continuously growing number of such prod-
ucts containing specialty chemical has developed a critical
need for safety assessment and standardization. With this,
generating scientifically validated safety data with an ad-
equate screening workflow is also required to estimate the
toxicity of the chemicals which are of concern regarding hu-
man health and environmental exposure. Several reports
have shown that specialty chemicals are interfering with
acute/chronic effects including neurological and systemic
pathology, developing skin allergies, and respiratory prob-

lems, etc.28. Specialty chemicals regularly appear as the
topmost common skin allergens, endocrine disruptors and
also provoke respiratory disorders’~"5. Comprehensive tox-
icity profiling of a large number of chemicals using in vivo
studies on rodents and other species would probably require
more than 2-3 years and relatively high cost of toxicity as-
sessment (which might be millions of dollars) per chemical®.
On the other side, experimental methods are resource inten-
sive and time-consuming to perform toxicity testing of the
entire list of specialty chemicals used in the large coverage
of the product spectrum. The development of in silico mod-
els for chemical testing is one of the approaches for the rapid
toxicity screening. It has emerged as one of the efficient risk
assessment technique that analyzes the correlation between
chemical structure and its biological properties by building a
model that explains the quantitative structure-toxicity rela-
tionship'®. A guideline by the European Chemicals Agency
(ECHA) and a revised framework by European Union (EU)
about registration, evaluation, authorization, and restriction
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of chemicals (REACH) are formulated for chemicals testing
using various alternate models including QSAR methods 78,
It is necessary here to point out that, the EU has prohibited
animal testing of cosmetic ingredients since March 2013.
These regulations necessitate a compelling need for evalu-
ating the toxicity potential of chemicals using in silico tools
such as QSAR for safety prioritization and formulation. Per-
forming initial in silico screening for genotoxicity assessment
saves cost, improves productivity and also facilitates chem-
ists to modify compounds to reduce toxicity without losing
desirable properties'®-21,

Due to the safety requirements of various regulatory agen-
cies, it is necessary to test different toxicity endpoints such
as skin irritation, penetration, sensitization, photo-toxicity,
carcinogenicity and mutagenicity potential of the specialty
chemicals for registration of new substances and product
development?2. Chemical structures based risk assessment
of compounds using computational approaches are promis-
ing for the development of predictive toxicity model which
are constructed using available experimental data for early
decision making and risk assessment of chemicals. From
the regulatory perspective, machine learning QSARs mod-
els have attained some degree of acceptance for genotoxicity
prediction?3, Various open sources and commercial tools
which are available for predicting genotoxicity of chemicals,
are mostly developed for pesticides and pharmacological
impurities?*25, Though certain overlap exists with these
groups of compound with specialty chemicals, it is essential
to develop more suitable predictive models for genotoxic risk
assessment. In order to identify the best predictive model for
mutagenicity and carcinogenicity for specialty chemicals, we
have systematically evaluated Geno-QSAR expert rule-based
approaches from the structural alerts and machine learning
based statistical models. To evaluate the performance of
these predictive tools, we compiled and curated a large train-
ing set which comprised 2146 chemicals of known mutage-
nicity and carcinogenicity potential. Finally, the predictive
power of the resulting Geno-QSAR models was assessed
for 131 specialty chemicals and cross-validated with avail-
able experimental data.

2. Materials and methods

2.1. Data preparation

The training set for the Geno-QSAR model building was
collected from two open source databases such as Carcino-

958

genic Potency Database (CPDB)%8 and the Istituto Superiore
di Sanita Chemical Carcinogens Database (ISSCAN)?’. A
total of 1229 chemicals with experimental carcinogenicity in
rat and mutagenicity in Salmonella typhimurium have been
taken from Berkeley CPDB. Chemicals with the positive ex-
perimental response at least in one sex of species were con-
sidered as carcinogenic. From ISSCAN database, 1150
chemicals were extracted along with their experimental car-
cinogenicity and mutagenicity data. The data extracted from
this database provide identification codes for carcinogenic-
ity and mutagenicity (Ames test) data where 3 = carcinogen/
mutagen; 2 = equivocal; 1 = non-carcinogen/non-mutagen.
Chemicals for the test data set were extracted from the avail-
able list of 131 specialty chemicals tested for skin absorp-
tion percentage on human/pig skin reported by Shen et al.28,
They have collected 45 chemicals from the RIFM database??
and remaining from the EDETOX database®.

For this study, all the canonical simplified molecular in-
put line entry system (SMILES) string of the chemicals were
collected from PubChem to develop Geno-QSAR predictive
model for specialty chemicals compounds using VEGA plat-
form. These specialty chemicals are categorized into seven
segments as personal care active ingredients, agrochemi-
cals, flavours and fragrances, construction chemicals, dyes
and pigments, surfactants, food additives and medication
(Supporting Table 1)3'. Many of these chemicals are over-
lapping in different categories®! and used for multiple pur-
poses/applications.

2.2. Geno-QSAR models

Benchmarking of QSAR models for toxicity prediction is
necessary to fulfill the deep gap of knowledge intended for
selecting potentially suitable and applicable methods with
high predictive power for the specific chemical category.
VEGA predictive platform is an open source environment that
offers thirty-three models for various toxicity endpoints such
as hepatotoxicity, developmental toxicity, persistence, log P,
bioconcentration factor (BCF), carcinogenicity, mutagenic-
ity, and skin sensitization. Several organizations including
regulators and public bodies in Europe and the USA have
contributed to the development of VEGA platform32. We se-
lected eight models in this investigation, including CAESAR
(carcinogenicity), CAESAR (mutagenicity), ISS (carcinoge-
nicity), 1SS (mutagenicity), ANTARES, IRFMN/ISSCAN,
SarPy, KNN for the predictions of both carcinogenicity and
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mutagenicity of chemicals. CAESAR3? is a European Com-
mission funded project which is dedicated to developing
QSAR models for the REACH legislation. VEGA-CAESAR
mutagenicity model was built on a large dataset of 4202 com-
pounds with their Ames test results while VEGA-CAESAR
carcinogenicity model was built on a dataset of 805 chemi-
cals. CAESAR automatically calculates chemical descriptors
and contains a subset of Toxtree rules. CAESAR ultilizes two
complementary techniques to refine its predictions: support
vector machine (SVM) algorithm to build an early model with
the best statistical accuracy, along with two sets of rules for
the removal of false negatives based on known structural
alerts from Toxtree. VEGA-SARpy (SAR in python) automati-
cally generate SAR models by finding the relevant rules from
data, without any prior knowledge®*. The training set of SarPy
is the same used for VEGA-CAESAR. The algorithm of
VEGA-SARpy generates substructure fragments. Structural
alerts from these fragmented candidates were selected on
the basis of their prediction performance for a training set.
This model classifies the chemicals either as a mutagen or
non-mutagen from the presence or absence of structural
alerts, respectively. KNN/Read-Across model performs a
read-across on a dataset of 5770 chemicals from the Hansen
dataset and also from the data produced within the Ames
QSAR project carried out by the National Institute of Health
Sciences of Japan®®. The read-across model was built using
the KNN approach®. VEGA-ISS Toxtree is based on a se-
ries of rules defined by Benigni and Bossa that detects mu-
tagenic chemicals®’. Toxtree includes alerts for genotoxic
carcinogenicity and non-genotoxic carcinogenicity. This
model compiles thirty-three structural alerts that mainly refer
genotoxic carcinogens so they hold importance for their
mutagenic activity as well. Hence, it is considered an impor-
tant tool for the detection of compounds that yield positive
results in the Ames test. This tool also flagging mutagenic or
non-mutagenic potentials based on structural alerts.
ISSCAN38 is not only a repository of chemical compounds
tested with the carcinogenicity bioassay on rodents but also
an expert decision support tool. This database contains only
the experimental results from the carcinogenicity bioassay.
The structure of this database was established on the basis
of Distributed Structure-Searchable Toxicity (DSSTox) Net-
work developed by the US Environmental Protection Agency
(EPA). ANTARES® is a useful tool to reduce the gap in as-
sessing Non-Testing Methods (NTM) as an alternative ap-

proach for the REACH legislation. This method includes
QSAR models and read-across.

2.3. Geno-QSAR predictive performance evaluation

In this study, the performance of these predictive models
was assessed according to the guidelines of the Organiza-
tion for Economic Co-operation and Development (OECD)*.
All models were validated by five-fold cross-validation method
which included accuracy, sensitivity, specificity, positive
predictivity and negative predictivity*!. The sensitivity (SE)
which means the rate of true positive compounds, the speci-
ficity (SP) means the rate of true negative, and the whole
predictive accuracy (Q) which represents the total correct
predictive accuracy of the condition under study. In statis-
tics, the proportions of positive and negative results are rep-
resented by the positive and negative predictive values (PPV
and NPV respectively). These were calculated using the fol-
lowing equations.

Accuracy = (True Positives + True Negatives)/Total (1)
Sensitivity = True Positives/

(True Positives + False Negatives) 2)
Specificity = True Negatives/

(True Negatives + False Positives) (3)
Positive Predictivity = True Positives/

(True Positives + False Positives) 4)
Negative Predictivity = True Negatives/

(True Negatives + False Negatives)  (5)

In addition, the receiver operating characteristic (ROC) curve
analysis was performed to identify the best predictive method
for Geno-QSAR. This analysis was carried out by consider-
ing True Positive rate (Sensitivity) on the Y-axis and False
Positive rate on the X-axis (1-specificity), and the result of
the curve offers a clearer understanding of the accuracy of
prediction.

3. Results and discussion

3.1. Data analysis

A dataset of 2379 chemicals was compiled from CPDB
and ISSCAN database for testing carcinogenicity and mu-
tagenicity endpoints. This dataset contains compound de-
tails as SMILES string, CAS number together with the corre-
sponding experimental toxicity values. Before evaluating the
performance of the models, a number of false SMILES strings,
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duplicates, salts, mixtures, and ambiguous compounds were
refined and removed from the selected dataset. The final
number of chemicals under examination for carcinogenicity
was 1336 which include 790 known carcinogens and 546
known non-carcinogens. Similarly, there were 810 mutage-
nicity compounds selected include 387 known mutagens and
423 known non-mutagens. Consequently, the experimental
datain the total set are quite balanced between carcinogenic/
non-carcinogenic and mutagenic/non-mutagenic compounds.
For these selected datasets of mutagenic/non-mutagenic and
carcinogen/non-carcinogen chemicals, all the genotoxicity
QSAR models in the Vega platform were assessed by the
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nicity (Fig. 2) and mutagenicity (Fig. 3) using egs. (1)-(5).
For the compounds in the carcinogenicity prediction set, sen-
sitivity ranged between 69% and 81% wherein ISS and AN-
TARES provided the highest value. However, specificity was
higher for CAESAR. The specificities obtained by ISS, AN-
TARES, ISSCAN were also incomparable range. Accuracy
varied from 64% for ISSCAN to 71% for ISS (Supporting
Table 3). The positive predictive value was highest for CAE-
SAR with 75% while the negative predictive value for all the
models ranged between 57% and 67% (Fig. 2). Similarly, for
the compounds in the mutagenicity prediction set, accuracy
is high for all the four QSAR models, varying from 76% for
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Fig. 1. Benchmarking of genotoxicity QSAR models by predicting the counts of True Positive (TP), True Negative (TN), False Positive (FP) and
False Negative (FN) in the dataset of (a) carcinogenicity and (b) mutagenicity models, respectively.

counts (Fig. 1) of True Positives (TP), True Negatives (TN),
False Positives (FP), and False Negatives (FN). True posi-
tive refers to the positives and True negative refers to the
negative output that was correctly labeled by the classifier
(Supporting Table 2). False positives are the negatives that
were incorrectly labeled as positive whereas false negatives
are the positives that were incorrectly labeled as negative by
the classifier. For carcinogenicity, the best model for TP is
ANTARES, TN is CAESAR, FP is ISSCAN and FN is CAE-
SAR. For mutagenicity, the best model is TP is KNN, TN is
KNN, FP is ISS and FN is SARpy.

3.2, Performances of five-fold cross-validation

To evaluate the performance of each QSAR method, the
five-fold statistical parameter analysis was performed using
calculated specificity, sensitivity, accuracy, positive predic-
tive value, and the negative predictive value for carcinoge-
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Fig. 2. Radar plot summary for carcinogenicity dataset. Sensitivity was
best predicted by ISS and ANTARES. CAESAR gave the high-
est positive predictive values while negative predictive values
were best described by ISS.
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Fig. 3. Radar plot summary for mutagenicity dataset. The most sen-
sitive (0.95), specificity (0.90), and accuracy (0.92) model is
KNN. KNN also gave the highest positive (0.90) and negative
predictive values (0.95).

SARpy up to 92% for KNN/Read across. This can be attrib-
uted to the high sensitivity (between 74% and 95%) and high
positive predictivity (between 73% and 90%) reported for all
the QSAR models (Fig. 3) (Supporting Table 4). Amodel with
high sensitivity provides a better prediction on regulatory
perspective than specificity which is justified in our data as
well. To draw a clear inference from a five-fold statistical

10
0.8 . A
v
[
> 0.6
=
£
3
c
A 04
02 s CAESAR
e |SSTOX
A ANTARES
v [ISSCAN
0.0 T
0.2 0.4 06
1-Specificity
ROC for Carcinogenicity
(a)

parameter, ROC was plotted (Fig. 4). ROC analysis reveals
the true positive rate (or sensitivity) against the false positive
rate (1-specificity). The closer is the model to the point (0, 1)
the better it is. Hence, the ANTARES QSAR model for carci-
nogenicity and the KNN/Read across model for mutagenic-
ity performed better compared to the other QSAR genotoxicity
predictive approaches.

3.3. Performance of Geno-QSAR on test dataset

The main objective of the study is to develop the best
predictive Geno-QSAR models for the carcinogenicity and
mutagenicity and risk assessment of 131 compounds en-
listed in the dataset (Supporting Table 1). Firstly, a larger
dataset of genotoxicity endpoints was evaluated using the
models available in the VEGA platform. The results showed
a clear predictive trend for mutagenicity with some close range
of selected predictive models and some variations found for
carcinogenicity prediction using those models. To get an over-
all best predictive models of genotoxicity without performing
in vitro tests, OECD based five-fold performance evaluation
method and ROC analysis were carried out. These analyses
revealed that the most suitable QSAR model for mutagenic-
ity is KNN/ Read across and for carcinogenicity is ANTARES
for the selected dataset from CPDB and ISSCAN database.
Using the best-performed models, we finally predicted the
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Fig. 4. Performance evaluation using ROC analysis of genotoxicity prediction (a) carcinogenicity and (b) mutagenicity. ANTARES is the best
model for the predictions of carcinogenicity and KNN is the best for mutagenicity.
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Table 1. List of selected specialty chemicals with predicted genotoxicity risk characterization*

Non-Mutagen + Carcinogen
Musk ketone
Nitrobenzene

Benzyl benzoate

Benzyl salicylate
Safrole

Eugenyl methyl ether
Estragole

Diethyl phthalate

Acetyl cedrene
1-(1,2,3,4,5,6,7,8-Octahydro-
2,3,8,8-tetramethyl-2-
naphthalenyl)ethanone
6-Acetyl-1,1,2,4,4,7-
hexamethyltetraline
Trichloromethyl phenyl
carbinyl acetate
Methyl 2-nonynoate
4-Aminobenzoic acid
4-Nitrophenol
Benzocaine
Beta-estradiol
Chloramphenicol
Cinnamyl anthranilate
Dhea

Diazinon

Flutamide

Lindane

Nicotinamide

Nicotinic acid
N-Phenyl-2-naphthylamine
Pentachlorophenol
Phoxim

Pirimicarb
Trichloromethane

962

Non-Mutagen + Non-Carcinogen

Farnesol
a-Hexycinnamaldehyde
P-t-butyl-a-methyl-
hydrocinnamicaldehyde

d-Limonene

Butyl salicylate

Methyl dihydrojasmonate
dl-Citronellol

Benzyl acetate

Eugenol

Cinnamic acid

Diethyl malonate

Benzoic acid

Geraniol

Linalool
Cinnamyl alcohol
Phenethyl alcohol
Benzyl alcohol
Phenol

Ethyl alcohol
Geranyl nitrile
Methyl trarate
Lactic acid
Triethanolamine
2-Ethyl-1-hexanol
2-Butoxyethanol
2-Ethoxyethanol
2-Phenylphenol
Caffeine
Catechol
Propylene glycol
Trimethylamine
Boric acid

1,3,4,6,7,8-Hexahydro-4,6,6,7,8,8-
hexamethylcyclopenta-y-2-benzopyran

Triclopyr
Trichlorocarbanilide
Thiourea
Theophylline
Testosterone

Mutagen + Carcinogen
Dimethylnitrosamine
Dinitrochlorobenzene

4-Amino-2-nitrophenol
4-Dimethylaminobenzene
4-Nitroaniline

Azodrin

Butachlor

DFP

MbOCA

MDA

Methyl-parathion

o-Cresyl glycidyl ether

o-Toluidine

Paraoxon
1,6-Hexanedioldiglycidyl ether
2-Naphthylamine
2-Nitro-4-phenylenediamine
Carbaryl

Mutagen + Non-Carcinogen
Coumarin

Methyl salicylate

3 and 4-(4-hydroxy-4-methyl-

pentyl)-3-cyclohexene-1-car-
boxaldehyde

2-Methoxyethyl acetate
Hippuric acid

Acetylcysteine
Dimethoate
4-Heptyloxyphenol
Methiocarb
Phosmet

Propoxur

4-Pentyloxyphenol
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Progesterone
Deoxycorticosterone

Table-1 (contd.)

Diethylene glycol monobutyl ether acetate

Dipropylene glycol methyl ether
Malathion
N,N-Diethyl-m-toluamide
N-Propoxyethanol
Atrazine
4-Acetamidophenol
4-Aminophenol
4-Cyanophenol
4-lodophenol
Acetylsalicylic acid
Androstenedione

Aniline
2-Isopropoxyethanol
1-Decanol

Octanoic acid

Lauric acid
17a-Hydroxyprogesterone
1-Methoxypropan-2-ol
2,4-dichlorophenoxyacetic acid
Diethyl maleate
2-Methyl-2-propanol
2-Phenoxyethanol
2-Hydroxybenzoic acid
Dihydro-ci-terpineol
Dihydromyrcenol
2-Methoxy-4-vinylphenol
a-Methyl-1,3-benzodioxole-5-
propionaldehyde

Amyl salicylate
Isoeugenol
2-Methoxy-4-propylphenol

*Validation of predicted genotoxicity was carried out from the data available in the literature for 46 speciality chemicals compounds in each

category (in Bold).

carcinogenicity and mutagenicity of specialty chemicals cho-
sen in this investigation. Furthermore, these 131 specialty
chemicals were characterized to find the safest chemicals
that can be used in consumable products. By performing
computation on the best predictive Geno-QSAR models on
131 specialty chemicals are categorized into four groups such
as mutagen and carcinogen, non-mutagen and carcinogen,
non-carcinogen and mutagen and non-mutagen and non-

carcinogen (Fig. 5, Table 1). Further to enhance the risk as-
sessment and safety prioritization specialty chemicals, re-
sults are refined into three different groups such as (1) po-
tentially most harmful, (2) potentially harmful, and (3) poten-
tially safe (Fig. 6). “Potentially most harmful” category in-
cludes 18 chemicals which are both mutagenic and carcino-
genic. “Potentially harmful” category included 42 compounds
which are predicted as either non-mutagenic and carcino-

963



J. Indian Chem. Soc., Vol. 96, July 2019

Mutagen & Carcinogen
Non-mutagen & Carcinogen
Non-carcinogen & Mutagen

Non-mutagen & Non-carcinogen
54%

23%

9.2%

Fig. 5. Grouping of 131 specialty chemicals into 4 classes: Class 1
has 18 chemicals which are both mutagenic and carcinogen.
Class 2 has 12 chemicals which are both mutagenic and non-

carcinogen. Class 3 has 30 chemicals which are both non-

mutagen and carcinogen. Class 4 contains 71 chemicals which
are both non-mutagenic and non-carcinogenic.

Il Potentially most harmful
I Potentially harmful
[ Potentially safe

54%

Fig. 6. Risk characterization of specialty chemicals into three catego-

ries: “Potentially most harmful” category includes 18 chemi-
cals. “Potentially harmful” category included 42 while remain-
ing 71 compounds fall into “‘potentially safe” category.

genic or mutagenic and non-carcinogenic. Remaining 71
compounds which are both non-mutagenic and non-carci-
nogenic are placed in the third category i.e. “potentially safe”
and may not impose adverse health effects related to
genotoxicity. Further validation of the predictions was veri-
fied by exploring the available literature on reported experi-
mental toxicity data of the specialty chemicals (Supporting
Table 5). Out of the 131 specialty chemicals, 46 compounds
were available in the literature and had known experimental
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values of genotoxicity3242-57_ The categories such as mu-
tagen and carcinogen, non-mutagen and carcinogen and non-
carcinogen and mutagen accurately matched with the re-
sults obtained by the best QSAR model demonstrated in this
study. For the case of non-mutagen and non-carcinogen, we
found five compounds were listed as a carcinogen in the
literature. This may be due to the comparatively lower % of
accuracy in terms of sensitivity and specificity relevant to a
true negative prediction by the selected QSAR model for car-
cinogenicity. The minor deviation of results found for the
QSAR models reinforces the importance of improving dataset
for model development with a range of more chemical com-
pounds. Additionally, results of skin sensitization?® and pre-
dicted genotoxicity in this work were overlaid to find the rela-
tionship among potentially safer chemicals. This compari-
son revealed that among the compounds listed as non-sen-
sitizers?8 were overlapping as either carcinogen or mutagen.
These compounds were also omitted to derive a final safer
list of specialty chemicals. Results from these chemical com-
pounds guide a handful of safe chemicals and may be fur-
ther verified experimentally for its usage in the specific appli-
cations. An integrated comparison made in this work on ex-
perimental skin sensitization results with the observed toxic-
ity predicted by Geno-QSAR approaches may aid in com-
prehensible decision making on the regulatory safety assess-
ment.

4, Conclusions

The utilization of experimental data for structure-activity
relationship studies strengthens their descriptive assessment
and contributes to the reduction, refining, and replacement
of animal experimentations. Various QSAR models are de-
veloped using different approaches and are available for dif-
ferent chemical species. In our study, we took one hundred
thirty-one specialty chemicals to predict the two most impor-
tant genotoxicity endpoints such as carcinogenicity and mu-
tagenicity using eight QSAR predictive models. The discrep-
ancies in the results provided by each model were quite ap-
parent and contribute to increased levels of complexity at
the regulatory purpose. It was difficult to choose the reliable
genotoxicity predictive performance of the individual models
or to improve the quality of prediction. To overcome the chal-
lenges, we built a dataset of 2146 compounds with their
known carcinogenicity and mutagenicity values. The best
predictive Geno-QSAR models were obtained using ranges
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of parameters applying five-fold performance evaluation and
ROC analysis. Resulting Geno-QSAR models, ANTARES for
carcinogenicity and KNN/Read across model for mutagenic-
ity, we predicted the carcinogenicity and mutagenicity for the
selected dataset of specialty chemicals. We also predicted
the list of different category for critical risk assessment and
safe prioritization of specialty chemicals. Finally, Geno-QSAR
models demonstrated in this study were also cross-validated
by the experimental genotoxicity data available in the litera-
ture. Resulting Geno-QSAR model predictions were more
consistent for mutagen and carcinogen, non-mutagen and
carcinogen and non-carcinogen and mutagen categories and
90 % prediction were matched for the group of non-mutagen
and non-carcinogen experimental results. In this context, the
present results suggest that improved Geno-QSAR models
are useful to support risk assessment of specialty chemi-
cals. However, a robust QSAR system with accurate
genotoxicity prediction of specialty chemicals can aid in de-
cision making support for the regulatory framework.
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