
Chromium doping in Titania for making Dye Sensitized Solar cell with improved efficiency and stability

Narottam Prasad¹, K.R. Patel² and M. S. Roy¹

¹Radiation and Materials Application Group, Defence Laboratory, Jodhpur342011 ²Physics Department, JNV University, Jodhpur-342005

Abstract

Dye-sensitized solar cell was fabricated by modifying photo anode with chromium doping in titanium dioxide prepared by sol-gel technique. Photo-anode was treated with $TiCl_4$ and pre-sensitization with deoxychollic acid (DCA) for enhancement in its short circuit current (J_{sc}) and open circuit voltage (V_{oc}). Quasi solid state electrolyte was used for improving its stability. The observations reveal that Cr-doped TiO_2 inhibits the phase transformation, increase the surface area and decrease the crystallite size as is evidenced by its X-ray diffraction (XRD) /Raman spectrum. Under open solar radiation of 100 mW/cm² (1 SUN) in ambient condition, Jsc gets enhanced from 2.31 mA to 4.11 mA and V_{oc} from 0.42 V to 0.58 V due to modification in photo-anode. The overall efficiency (η) enhanced by 200%.

Key Words: Sol gel technique, chromium doping, curcumine, sensitization, chemical treatment, conversion efficiency, quasi solid state electrolyte