Hysteresis and Energy Storage Properties Study of Ba_{0.5}Co_{0.5}Bi₂Nb₂O₉ and Ba_{0.5}Co_{0.5}Bi₂NbTaO₉ Nano Ferroelectric Ceramics Prepared Through Chemical Route: A Comparative Study

Mrinal K. Adak and Debasis Dhak *

Nanomaterials Research Lab, Department of Chemistry, Sidho-Kanho-Birsha University, Purulia – 723104, India, *E-mail: debasisdhak@yahoo.co.in, debasis_dhak.chem@skbu.ac.in

Abstract: Ba_{0.5}Co_{0.5}Bi₂Nb₂O₉ (BCoBN) and Ba_{0.5}Co_{0.5}Bi₂NbTaO₉ (BCoBNT) ferroelectric nano ceramics were prepared through chemical precursor solution decomposition method. P-E hysteresis study established that both the materials are non-linear ferroelectrics. The coercivity, remnant polarization and saturated polarization values were increased with increasing the applied electric field. BCoBNT showed the highest remnant polarization 3.96 μ C/cm² at 40.24 kV/cm electric field with a high charge energy storage density of 220.76 J/cm³. The highest energy efficiency was 84.74 % found for BCoBN ceramics at 10.15 kV/cm applied electric field. BCoBNT showed the much higher polarization than BCoBN ceramics. The discharge and charge energy density were increased with increasing the electric field for both the ceramics. The energy efficiency value was regularly decreased for BCoBNT ceramics but some irregularity was found for BCoBN ceramics.

Keywords: Nanomaterials, Ferroelectricity, FTIR, Hysteresis, Energy storage density