
Synthesis and Hydrogen Storage Performance of Al₂O₃ Nanoparticle Decorated Functionalized Multi-Walled Carbon Nanotubes (Al₂O₃@f-MWCNTs)

Madhavi Konni and Saratchandra Babu Mukkamala*

Nanoscience & Nanotechnology Laboratory, Department of Chemistry, Institute of Science, GITAM (Deemed University), Visakhapatnam 530045, A.P., India

* Corresponding author E-mail address: <u>mscbabu@gmail.com</u> (Prof. S.B. Mukkamala)

Abstract:

Al₂O₃ nanoparticle decorated functionalized Multi-Walled Carbon Nanotubes (Al₂O₃@f-MWCNTs) have been synthesized examine the hydrogen storage performance at noncryogenic temperatures and moderate pressures for green energy applications. The experimental conditions such as solvent medium and metal content have been tuned to improve the decoration of Al₂O₃ nanoparticles on the surface of carboxylate-functionalized multi-walled carbon nanotubes (COOH-MWCNTs/f-MWCNTs). The morphology, surface properties and structure of compounds were characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), FT-IR and powder X-ray diffraction. The hydrogen uptake of materials was examined by High Pressure Gas Adsorption System at non-cryogenic temperatures i.e. 253 K and 298 K up to 70 bar pressure. Al₂O₃@f-MWCNTs prepared in water, triethylamine and DMF adsorbed 0.46, 0.55 and 0.67 wt% of hydrogen at 253 K and 0.17, 0.31 and 0.46 wt% of hydrogen at 298 K, respectively. The higher uptake of hydrogen by Al₂O₃@f-MWCNTs prepared in DMF is due to uniform loading ofmetal nanoparticles on the surface of carbon nanotubes. Keywords: Functionalization; P-MWCNTs;f-MWCNTs;Al₂O₃ nanoparticles; hydrogen storage.